
11/06/2014 

RNASeq 

Differential Expression 
 Le Corguillé 

v1.00 

1 



RNASeq 

• No previous genomic sequence 
information is needed 

– In RNA-seq the expression signal 
of a transcript is limited by the 
sequencing depth and is 
dependent on the expression 
levels of other transcripts. 

– Discreet distributions. 

 

Microarray 

• An existing library of expressed 
sequence tags is required 

– In array-based methods probe 
intensities are independent of 
each other such as microarrays.
    
  

• Continuous distributions 

2 

Introduction 



Introduction 

 

 

 

 

3 

Variability 

Lane effect 

Run effect 
Library  

prep effect 

Biological 

effect 
Condition effect 



Introduction 

 

 

 

 

4 
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+ normalization 
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• Replicates 
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Inputs 

• Raw count table 
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id LL06_1 LL06_2 LL09_1 LL09_2 

comp3130_seq1 12 6 9 15 

comp3131_seq2 167 233 987 856 

comp4523_seq1 685 785 648 458 

comp6984_seq3 87 68 354 591 



Inputs 

• Samples metadata / Samples info 
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samplename batch light hour … 

LL06_1 1 LL 06 

HL06_1 1 HL 06 

LL09_1 1 LL 09 

HL09_1 1 HL 09 

LL12_1 1 LL 12 

HL12_1 1 HL 12 

LL06_2 2 LL 06 

HL06_2 2 HL 06 

LL09_2 2 LL 09 



Inputs 

• Scale 

 

– Exon level -> DEXSeq 

 

– Gene level 

 

– Isoform level 
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The workflow 

Raw counts
Normalization

Sample info

Normalized counts
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The workflow 

Raw counts
Normalization

Sample info

Statistical Model
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Normalization 

Raw counts
Normalization

Normalized counts



Normalization 

• Why ? 
– Between-sample  compare a gene in different 

sample 

• Depth of sequencing == library size 

• Sampling bias during the libaries construction == batch effect 

• Presence of majority fragments == saturation 

• Sequence composition du to PCR-amplification step (GC 
content) 

 

– Within-sample  compare genes in a sample 

• Gene length 

• Sequence composition (GC content) 
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Normalization 

• How ? 
– Between-lane  compare a gene in different sample 

• Scale data on the libraries sizes 

• Using housekeeping genes 

 

 

 

– Within-lane  compare genes in a sample 

• Normalize on gene lengths 
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Normalization 

• How ? 
– Between-lane  compare a gene in different sample 

• Scale data on the libraries sizes 

• Using housekeeping genes 
– When :  
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Condition A Condition B 



Normalization 

• How ? 
– Between-lane  compare a gene in different sample 

• Scale data on the libraries sizes 

• Using housekeeping genes 
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Condition A Condition B 



Normalization 

• How ? 
– Between-lane  compare a gene in different sample 

• Scale data on the libraries sizes 

• Using housekeeping genes 
– When :  

 

 

 

 

 

 
 

– Examples : actin, GAPDH, ubiquitin, HSP90, Histone, rRNA, tRNA … 
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Normalization 

• How ? 
– Between-lane  compare a gene in different sample 

• Scale data on the libraries sizes 

• Using housekeeping genes 
– When :  

 

 

 

 

 

 
 

– Examples : actin, GAPDH, ubiquitin, HSP90, Histone, rRNA, tRNA … 
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Condition A Condition B 



Normalization 

• Normalization methods 
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http://www.cnrs.fr/inee/recherche/fichiers/EPEGE/Communications/Julie_AUBERT.pdf 

Total Counts (TC) 

 - Motivation: greater lane sequencing depth => greater counts 

 - Assumption: read counts are proportional to expression level and sequencing depth  

 (same RNAs in equal proportion)  

 - Method: divide transcript read count by total number of reads 

 

 - Problem: Sensitive to the presence of majority genes 



Normalization 

• Normalization methods 
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http://www.cnrs.fr/inee/recherche/fichiers/EPEGE/Communications/Julie_AUBERT.pdf 

Total number of reads (library sizes) 

 - Motivation: greater lane sequencing depth => greater counts 

 - Assumption: read counts are proportional to expression level and sequencing depth  

 (same RNAs in equal proportion)  

 - Method: divide transcript read count by total number of reads 

 

 - Problem: Sensitive to the presence of majority genes 

Upper Quartile normalization (UQ) or Median (Med) 

 - Motivation:  total read count is strongly dependent on a few highly expressed transcripts 

 - Assumption:  read counts are proportional to expression level and sequencing depth 

 - Method: divide transcript read count by, e.g., upper quartile 

 

 - Problem: Sensitive to the presence of majority genes 



Normalization 

• Normalization methods 
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http://www.cnrs.fr/inee/recherche/fichiers/EPEGE/Communications/Julie_AUBERT.pdf 

Total number of reads (library sizes) 

 - Motivation: greater lane sequencing depth => greater counts 

 - Assumption: read counts are proportional to expression level and sequencing depth  

 (same RNAs in equal proportion)  

 - Method: divide transcript read count by total number of reads 

 

 - Problem: Sensitive to the presence of majority genes 

Upper Quartile normlization (UQ) 

 - Motivation:  total read count is strongly dependent on a few highly expressed transcripts 

 - Assumption:  read counts are proportional to expression level and sequencing depth 

 - Method: divide transcript read count by, e.g., upper quartile 

 

 - Problem: Sensitive to the presence of majority genes 

Full quantile normalization (FQ) 

 - Motivation:  total read count is strongly dependent on a few highly expressed transcripts 

 - Assumption:  read counts have identical distribution across lanes 

 - Method: all quantiles of the count distributions are matched between lanes 

 

 - Problem: Can increase between group variance  

 Is based on an very (too) strong assumption (similar distributions) 



Normalization 

• Normalization methods 
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http://www.cnrs.fr/inee/recherche/fichiers/EPEGE/Communications/Julie_AUBERT.pdf 

Total number of reads (library sizes) 

 - Motivation: greater lane sequencing depth => greater counts 

 - Assumption: read counts are proportional to expression level and sequencing depth  

 (same RNAs in equal proportion)  

 - Method: divide transcript read count by total number of reads 

 

 - Problem: Sensitive to the presence of majority genes 

Upper Quartile normlization (UQ) 

 - Motivation:  total read count is strongly dependent on a few highly expressed transcripts 

 - Assumption:  read counts are proportional to expression level and sequencing depth 

 - Method: divide transcript read count by, e.g., upper quartile 

 

 - Problem: Sensitive to the presence of majority genes 

Full quantile normalization (FQ) 

 - Motivation:  total read count is strongly dependent on a few highly expressed transcripts 

 - Assumption:  read counts have identical distribution across lanes 

 - Method: all quantiles of the count distributions are matched between lanes 

 

 - Problem: Can increase between group variance  

 Is based on an very (too) strong assumption (similar distributions) 

Reads Per Kilobase per Million mapped reads (RPKM / FPKM) 

 - Motivation:   greater lane sequencing depth and gene length => greater counts whatever 

 the expression level  

 Allow comparaison of expression of different genes in a sample 

 - Assumption:   read counts are proportional to expression level, gene length and 

 sequencing depth (same RNAs in equal proportion) 

 - Method: divide gene read count by total number of reads (in million) and gene length  

 (in kb) 

 

 - Problem: Sensitive to the presence of majority genes 

 Implies a similarity between RNA repertoires expressed 

 



Normalization 

• RPFM / FPFM 
– Pro 

• Simple, easy to understand 

• Comparable between different genes within the same dataset 

– Cons 
• Small changes in highly expressed genes (especially differences in rRNA 

contamination) cause a global shift in all other values 

• Small changes across lowly expressed genes (especially differences in 
DNA contamination) cause differences across a wide number of genes. 

 

• Mixing of noise levels 

• Noise is generally linked to the number of observations 

• The same RPKM value could come from 
– A small lowly observed gene with high noise 

– A large well observed gene with low noise 

 

 

 

28 
Simon Andrews - simon.andrews@babraham.ac.uk - RNA-Seq Analysis 

http://blog.nextgenetics.net/?e=51 



Normalization 

• Library size VS RPFM 
• If we only normalized the individual tag counts by total library tag count, 

we would get a constant average normalized abundance. The numerator 
and denominater in this normalization are both in the same unit - tag 
counts. 

 

• For RPKMs, we are normalizing the tags by gene length first, and then 
normalizing by library size. The first normalization by length produces the 
unit of tag count/kilobase. The second normalization by library size 
divides tags/kilobase by tag count. This improper unit of normalization in 
the denominater is what is causing the inconsistent average RPKMs. 

 

• The average number of read across samples differe after RPKM 
normalization (NDR: The author propose to fix this issue) 
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http://blog.nextgenetics.net/?e=51 

http://haroldpimentel.wordpress.com/2014/05/08/what-the-fpkm-a-review-rna-seq-expression-units/ 



Normalization 

• Library size VS RPFM 
• If we only normalized the individual tag counts by total library tag count, 

we would get a constant average normalized abundance. The numerator 
and denominater in this normalization are both in the same unit - tag 
counts. 

 

• For RPKMs, we are normalizing the tags by gene length first, and then 
normalizing by library size. The first normalization by length produces the 
unit of tag count/kilobase. The second normalization by library size 
divides tags/kilobase by tag count. This improper unit of normalization in 
the denominater is what is causing the inconsistent average RPKMs. 

 

• The average number of read across samples differe after RPKM 
normalization (NDR: The author propose to fix this issue) 
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http://blog.nextgenetics.net/?e=51 

http://haroldpimentel.wordpress.com/2014/05/08/what-the-fpkm-a-review-rna-seq-expression-units/ 

Conspiracy 



Normalization 

• Normalization methods 
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Total number of reads (library sizes) 

 - Motivation: greater lane sequencing depth => greater counts 

 - Assumption: read counts are proportional to expression level and sequencing depth  

 (same RNAs in equal proportion)  

 - Method: divide transcript read count by total number of reads 

 

 - Problem: Sensitive to the presence of majority genes 

Upper Quartile normlization (UQ) 

 - Motivation:  total read count is strongly dependent on a few highly expressed transcripts 

 - Assumption:  read counts are proportional to expression level and sequencing depth 

 - Method: divide transcript read count by, e.g., upper quartile 

 

 - Problem: Sensitive to the presence of majority genes 

Full quantile normalization (FQ) 

 - Motivation:  total read count is strongly dependent on a few highly expressed transcripts 

 - Assumption:  read counts have identical distribution across lanes 

 - Method: all quantiles of the count distributions are matched between lanes 

 

 - Problem: Can increase between group variance  

 Is based on an very (too) strong assumption (similar distributions) 

Reads Per Kilobase per Million mapped reads (RPKM / FPKM) 

 - Motivation:   greater lane sequencing depth and gene length => greater counts whatever 

 the expression level  

 Allow comparaison of expression of different genes in a sample 

 - Assumption:   read counts are proportional to expression level, gene length and 

 sequencing depth (same RNAs in equal proportion) 

 - Method: divide gene read count by total number of reads (in million) and gene length  

 (in kb) 

 

 - Problem: Sensitive to the presence of majority genes 

 Implies a similarity between RNA repertoires expressed 

 



Normalization 

• Normalization methods 
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Total number of reads (library sizes) 

 - Motivation: greater lane sequencing depth => greater counts 

 - Assumption: read counts are proportional to expression level and sequencing depth  

 (same RNAs in equal proportion)  

 - Method: divide transcript read count by total number of reads 

 

 - Problem: Sensitive to the presence of majority genes 

Upper Quartile normlization (UQ) 

 - Motivation:  total read count is strongly dependent on a few highly expressed transcripts 

 - Assumption:  read counts are proportional to expression level and sequencing depth 

 - Method: divide transcript read count by, e.g., upper quartile 

 

 - Problem: Sensitive to the presence of majority genes 

Full quantile normalization (FQ) 

 - Motivation:  total read count is strongly dependent on a few highly expressed transcripts 

 - Assumption:  read counts have identical distribution across lanes 

 - Method: all quantiles of the count distributions are matched between lanes 

 

 - Problem: Can increase between group variance  

 Is based on an very (too) strong assumption (similar distributions) 

Reads Per Kilobase per Million mapped reads (RPKM / FPKM) 

 - Motivation:   greater lane sequencing depth and gene length => greater counts whatever 

the  expression level  

 Allow comparaison of expression of different genes in a sample 

 - Assumption:   read counts are proportional to expression level, gene length and 

sequencing depth  (same RNAs in equal proportion) 

 - Method: divide gene read count by total number of reads (in million) and gene length (in 

kb) 

 

 - Problem: Sensitive to the presence of majority genes 

 Implies a similarity between RNA repertoires expressed 

 

The Effective Library Size concept : TMM (edgeR) and DESeq 

 - Motivation:   Different biological conditions express different RNA repertoires, leading to 

 different total amounts of RNA 

 - Assumption:   A majority of transcripts is not differentially expressed 

 - Method: Minimizing effect of (very) majority sequences 

 

 - Problem: ? 



Normalization 

• Normalization methods 
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Total number of reads (library sizes) 

 - Motivation: greater lane sequencing depth => greater counts 

 - Assumption: read counts are proportional to expression level and sequencing depth  

 (same RNAs in equal proportion)  

 - Method: divide transcript read count by total number of reads 

 

 - Problem: Sensitive to the presence of majority genes 

Upper Quartile normlization (UQ) 

 - Motivation:  total read count is strongly dependent on a few highly expressed transcripts 

 - Assumption:  read counts are proportional to expression level and sequencing depth 

 - Method: divide transcript read count by, e.g., upper quartile 

 

 - Problem: Sensitive to the presence of majority genes 

Full quantile normalization (FQ) 

 - Motivation:  total read count is strongly dependent on a few highly expressed transcripts 

 - Assumption:  read counts have identical distribution across lanes 

 - Method: all quantiles of the count distributions are matched between lanes 

 

 - Problem: Can increase between group variance  

 Is based on an very (too) strong assumption (similar distributions) 

Reads Per Kilobase per Million mapped reads (RPKM / FPKM) 

 - Motivation:   greater lane sequencing depth and gene length => greater counts whatever 

the  expression level  

 Allow comparaison of expression of different genes in a sample 

 - Assumption:   read counts are proportional to expression level, gene length and 

sequencing depth  (same RNAs in equal proportion) 

 - Method: divide gene read count by total number of reads (in million) and gene length (in 

kb) 

 

 - Problem: Sensitive to the presence of majority genes 

 Implies a similarity between RNA repertoires expressed 

 

The Effective Library Size concept : TMM (edgeR) and DESeq 

 - Motivation:   Different biological conditions express different RNA repertoires, leading to 

 different total amounts of RNA 

 - Assumption:   A majority of transcripts is not differentially expressed 

 - Method: Minimizing effect of (very) majority sequences 

 

 - Problem: ? 



Normalization 

• The Effective Library Size 
– TMM / edgeR  

• uses the number of mapped reads (i. e., count table column 
sums) and estimates an additional normalization factor to 
account for sample-specific effects (e. g., diversity); these two 
factors are combined and used as an offset in the NB model. 

 

– DESeq  

• defines a virtual reference sample by taking the median of each 
gene’s values across samples, and then computes size factors as 
the median of ratios of each sample to the reference sample. 

34 
Count-based differential expression analysis of RNA sequencing data using R and Bioconductor 
Simon Anders, Davis J. McCarthy, Yunshen Chen, Michal Okoniewski, Gordon K.Smyth, Wolfgang Huber & Mark D. Robinson 



Normalization 

WARNING 

• It is important to recognize that the number of reads 

which overlap a gene is not a direct measure of the 

gene’s expression. 

 

=> Genes length bias 

 

=> One effect of this bias is to reduce the ability to detect 

differential expression among shorter genes simply from the a lack 

of coverage since the power of statistical tests involving count 

data decreases with lower number of count 

 

35 
Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data 
Franck Rapaport, Raya Khanin, Yupu Liang, Mono Pirun, Azra Krek, Paul Zumbo, Christopher E. Mason, Nicholas D.  Socci and Doron Betel 



Normalization 

36 MA Dillies, et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data 

analysis. Brief Bioinform (2013) 14 (6): 671-683 :480 

Figure 1: 

 

Comparison of normalization methods for real 

data.  

 

(A) Boxplots of log2(counts + 1) for all conditions 

and replicates in the M. musculus data, by 

normalization method.  

 

 

 

 

(B) Boxplots of intra-group variance for one of the 

conditions (labeled ‘B’ in the corresponding 

data found in Supplementary Data) in the M. 

musculus data, by normalization method.  

 

 

 

 

 

 

(C)Analysis of housekeeping genes for the H. 

sapiens data.  

 

 

(D)  Consensus dendrogram of differential 

analysis results, using the DESeq 

Bioconductor package, for all normalization 

methods across the four datasets under 

consideration.  



STATISTICS 
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Statistics 

Raw counts
Normalization

Sample info

Statistical Model
Calculation of p.value

Normalized counts p.value



Statistics   Models 

• Rappel 

39 



Statistics   Models 

• The model 
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Poisson distribution 

 - Motivation: Poisson distribution appears when things are counted 

 - Assumption: mean and variance are the same 

 - Method: Poisson distribution has only one parameter  λ (expected number of reads) 

 

 - Problem:  

 Good distribution for technical replicates 

 But biological variability of RNA-seq count data cannot be capture using the 

 Poisson  distribution because data present overdispersion 

 (i.e., variance of counts larger than mean) 

http://smpgd2012.univ-lyon1.fr/IMG/pdf/NGS/gonzalez-smpgd2012.pdf 



Statistics   Models 

• The model 
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Poisson distribution 

 - Motivation: Poisson distribution appears when things are counted 

 - Assumption: mean and variance are the same 

 - Method: Poisson distribution has only one parameter  λ (expected number of reads) 

 

 - Problem:  

 Good distribution for technical replicates 

 But biological variability of RNA-seq count data cannot be capture using the 

Poisson  distribution because data present overdispersion 

 (i.e., variance of counts larger than mean) 

Simon Anders – EMBL – Differential expression analysis for sequencing count data 



Statistics   Models 

• The model 

42 

Poisson distribution 

 - Motivation: Poisson distribution appears when things are counted 

 - Assumption: mean and variance are the same 

 - Method: Poisson distribution has only one parameter  λ (expected number of reads) 

 

 - Problem:  

 Good distribution for technical replicates 

 But biological variability of RNA-seq count data cannot be capture using the 

Poisson  distribution because data present overdispersion 

 (i.e., variance of counts larger than mean) 

Wikipedia 

Mean  λ 

Variance  λ 



Statistics   Models 

• The model 
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Poisson distribution 

 - Motivation: Poisson distribution appears when things are counted 

 - Assumption: mean and variance are the same 

 - Method: Poisson distribution has only one parameter  λ (expected number of reads) 

 

 - Problem:  

 Good distribution for technical replicates 

 But biological variability of RNA-seq count data cannot be capture using the 

Poisson  distribution because data present overdispersion 

 (i.e., variance of counts larger than mean) 

• Consider this situation: 
• Several flow cell lanes are filled with aliquots of the same 

prepared library. 

• The concentration of a certain transcript species is exactly the 

same in each lane. 

• We get the same total number of reads from each lane. 

 
• For each lane, count how often you see a read from the 

transcript. Will the count all be the same? 

 

• No! Even for equal concentration, the counts will vary. This 

theoretically unavoidable noise is called shot noise. 

Simon Anders – EMBL – Differential expression analysis for sequencing count data 



Poisson distribution 

 - Motivation: Poisson distribution appears when things are counted 

 - Assumption: mean and variance are the same 

 - Method: Poisson distribution has only one parameter  λ (expected number of reads) 

 

 - Problem:  

 Good distribution for technical replicates 

 But biological variability of RNA-seq count data cannot be capture using the 

Poisson  distribution because data present overdispersion 

 (i.e., variance of counts larger than mean) 

Statistics   Models 

• The model 
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Negative Binomial (NB): edgeR and DESeq 

 - Motivation: distribution takes into account Overdispersion 

 - Assumption: 

 - Method:  NB is a two-parameter distribution  

 Origin: Y ∼ NB (p, m) 

  Y ... number of successes in a sequence of Bernoulli trials with 

  probability p before r failures occur 

 RNASeq case: λ (mean) and φ (overdispersion) 

 

 - Problem: φi / gene cannot be estimated due to the small number of individuals 

http://smpgd2012.univ-lyon1.fr/IMG/pdf/NGS/gonzalez-smpgd2012.pdf 



Poisson distribution 

 - Motivation: Poisson distribution appears when things are counted 

 - Assumption: mean and variance are the same 

 - Method: Poisson distribution has only one parameter  λ (expected number of reads) 

 

 - Problem:  

 Good distribution for technical replicates 

 But biological variability of RNA-seq count data cannot be capture using the 

Poisson  distribution because data present overdispersion 

 (i.e., variance of counts larger than mean) 

Statistics   Models 

• The model 
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Negative Binomial (NB): edgeR and DESeq 

 - Motivation: distribution takes into account Overdispersion 

 - Assumption: 

 - Method:  NB is a two-parameter distribution  

 Origin: Y ∼ NB (p, m) 

  Y ... number of successes in a sequence of Bernoulli trials with 

  probability p before r failures occur 

 RNASeq case: λ (mean) and φ (overdispersion) 

 

 - Problem: φi / gene cannot be estimated due to the small number of individuals 



Poisson distribution 

 - Motivation: Poisson distribution appears when things are counted 

 - Assumption: mean and variance are the same 

 - Method: Poisson distribution has only one parameter  λ (expected number of reads) 

 

 - Problem:  

 Good distribution for technical replicates 

 But biological variability of RNA-seq count data cannot be capture using the 

Poisson  distribution because data present overdispersion 

 (i.e., variance of counts larger than mean) 

Statistics   Models 

• The model 
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Negative Binomial (NB): edgeR and DESeq 

 - Motivation: distribution takes into account Overdispersion 

 - Assumption: 

 - Method:  NB is a two-parameter distribution  

 Origin: Y ∼ NB (p, m) 

  Y ... number of successes in a sequence of Bernoulli trials with 

  probability p before r failures occur 

 RNASeq case: λ (mean) and φ (overdispersion) 

 

 - Problem: φi / gene cannot be estimated due to the small number of individuals 

Simon Andrews - simon.andrews@babraham.ac.uk - RNA-Seq Analysis 



Poisson distribution 

 - Motivation: Poisson distribution appears when things are counted 

 - Assumption: mean and variance are the same 

 - Method: Poisson distribution has only one parameter  λ (expected number of reads) 

 

 - Problem:  

 Good distribution for technical replicates 

 But biological variability of RNA-seq count data cannot be capture using the 

Poisson  distribution because data present overdispersion 

 (i.e., variance of counts larger than mean) 

Statistics   Models 

• The model 
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Negative Binomial (NB): edgeR and DESeq 

 - Motivation: distribution takes into account Overdispersion 

 - Assumption: 

 - Method:  NB is a two-parameter distribution  

 Origin: Y ∼ NB (p, m) 

  Y ... number of successes in a sequence of Bernoulli trials with 

  probability p before r failures occur 

 RNASeq case: λ (mean) and φ (overdispersion) 

 

 - Problem: φi / gene cannot be estimated due to the small number of individuals 

Simon Andrews - simon.andrews@babraham.ac.uk - RNA-Seq Analysis 



Poisson distribution 

 - Motivation: Poisson distribution appears when things are counted 

 - Assumption: mean and variance are the same 

 - Method: Poisson distribution has only one parameter  λ (expected number of reads) 

 

 - Problem:  

 Good distribution for technical replicates 

 But biological variability of RNA-seq count data cannot be capture using the 

Poisson  distribution because data present overdispersion 

 (i.e., variance of counts larger than mean) 

Statistics   Models 

• The model 
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Negative Binomial (NB): edgeR and DESeq 

 - Motivation: distribution takes into account Overdispersion 

 - Assumption: 

 - Method:  NB is a two-parameter distribution  

 Origin:  Y ∼ NB (p, m) 

  Y ... number of successes in a sequence of Bernoulli trials with 

  probability p before r failures occur 

 RNASeq case: λ (mean) and φ (overdispersion) 

 

 - Problem: φi / gene cannot be estimated due to the small number of individuals 

http://smpgd2012.univ-lyon1.fr/IMG/pdf/NGS/gonzalez-smpgd2012.pdf 
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Statistics   Software 

For Exon 

DEXSeq 



Statistics   Software 

• In this paper, we have evaluated and compared eleven methods for differential expression analysis of RNA-seq data. Table 2 summarizes the main 
findings and observations. No single method among those evaluated here is optimal under all circumstances, and hence the method of choice in a 
particular situation depends on the experimental conditions. Among the methods evaluated in this paper, those based on a variance-stabilizing 
transformation combined with limma (i.e., voom+limma and vst+limma) performed well under many conditions, were relatively unaffected by 
outliers and were computationally fast, but they required at least 3 samples per condition to have sufficient power to detect any differentially 
expressed genes. As shown in the supplementary material (Additional file 1), they also performed worse when the dispersion differed between the 
two conditions. The non-parametric SAMseq, which was among the top performing methods for data sets with large sample sizes, required at least 4-
5 samples per condition to have sufficient power to find DE genes. For highly expressed genes, the fold change required for statistical significance by 
SAMseq was lower than for many other methods, which can potentially compromise the biological significance of some of the statistically significantly 
DE genes. The same was true for ShrinkSeq, which however has an option for imposing a fold change requirement in the inference procedure. 

• Small sample sizes (2 samples per condition) imposed problems also for the methods that were indeed able to find differentially expressed genes, 
there leading to false discovery rates sometimes widely exceeding the desired threshold implied by the FDR cutoff. For the parametric methods this 
may be due to inaccuracies in the estimation of the mean and dispersion parameters. In our study, TSPM stood out as the method being most 
affected by the sample size, potentially due to the use of asymptotic statistics. Even though the development goes towards large sample sizes, and 
barcoding and multiplexing create opportunities to analyze more samples at a fixed cost, as of today RNA-seq experiments are often too expensive to 
allow extensive replication. The results conveyed in this study strongly suggest that the differentially expressed genes found between small 
collections of samples need to be interpreted with caution and that the true FDR may be several times higher than the selected FDR threshold. 

• DESeq, edgeR and NBPSeq are based on similar principles and showed, overall, relatively similar accuracy with respect to gene ranking. However, the 
sets of significantly differentially expressed genes at a pre-specified FDR threshold varied considerably between the methods, due to the different 
ways of estimating the dispersion parameters. With default settings and for reasonably large sample sizes, DESeq was often overly conservative, 
while edgeR and in particular NBPSeq often were too liberal and called a larger number of false (and true) DE genes. In the supplementary material 
(Additional file 1) we show that varying the parameters of edgeR and DESeq can have large effects on the results of the differential expression 
analysis, both in terms of the ability to control type I error rates and false discovery rates and in terms of the ability to detect the truly DE genes. 
These results also show that the recommended parameters (that are used in the main paper) are indeed well chosen and often provide the best 
results. 

• EBSeq, baySeq and ShrinkSeq use a different inferential approach, and estimate the posterior probability of being differentially expressed, for each 
gene. baySeq performed well under some conditions but the results were highly variable, especially when all DE genes were upregulated in one 
condition compared to the other. In the presence of outliers, EBSeq found a lower fraction of false positives than baySeq for large sample sizes, while 
the opposite was true for small sample sizes. 

 

50 A comparison of methods for differential expression analysis of RNA-seq data. Charlotte Soneson1 and Mauro Delorenzi 

BMC Bioinformatics 2013, 14:91 doi:10.1186/1471-2105-14-91 



Statistics   Software 

• limma (i.e., voom+limma and vst+limma)  

– unaffected by outliers 

– but they required at least 3 samples per condition 

• SAMseq, ShrinkSeq (The non-parametric)  

– top performing methods for data sets with large sample sizes 

– required at least 4-5 samples per condition 

– fold change required for statistical significance was lower  compromise the biological significance 

– Small sample sizes inaccuracies in the estimation of the mean and dispersion parameters 

• TSPM  

– most affected by the sample size 

• DESeq, edgeR and NBPSeq  

– showed, overall, relatively similar accuracy with respect to gene ranking 

– recommended parameters well chosen and often provide the best results 

– pre-specified FDR threshold varied considerably between the methods 

– DESeq : overly conservative 

– edgeR, NBPSeq : too liberal and called a larger number of false (and true) DE genes. 

– edgeR, DESeq : varying the parameters of can have large effects on the results 

• EBSeq, baySeq and ShrinkSeq (posterior probability) 

–  baySeq performed well under some conditions ; results were highly variable, especially when all DE genes were 
upregulated in one condition 

– EBSeq  In the presence of outliers, found a lower fraction of false positives for large sample sizes not fot small sample 
sizes 

– baySeq In the presence of outliers, found a lower fraction of false positives true for small sample sizes  not fot large 
sample sizes 

 

51 A comparison of methods for differential expression analysis of RNA-seq data. Charlotte Soneson1 and Mauro Delorenzi 

BMC Bioinformatics 2013, 14:91 doi:10.1186/1471-2105-14-91 



Statistics   Model 

• Modes 

– 2 conditions: 

• between two (t-test like) 

• between more groups: (pairwise.t-test like) 

– N conditions – Multivariate analysis:     
generalized linear models (GLMs) (Anova-like) 

• 1 factor 

• 2 factors 

• N factors 

Ex: ~Treatment+Time+Batch 
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Normalized counts p.value
Filtering on p.value

Filtered normalized 
counts



Statistics   Selection 

• The results 
– p.value 

• The p-value of the test statistic is a 
way of saying how extreme that 
statistic is for our sample data. The 
smaller the p-value, the more unlikely 
the observed sample. 

 

– adjusted p.value / False Discovery 
Rate 

• Used in multiple hypothesis testing 

• Corrections 
– Bonferroni 

– Benjamini-Hochberg (BH) 
54 



Statistics   Selection 

• Filtering 
– alpha threshold 

• The number alpha is the threshold value that we measure p-
values against. It tells us how extreme observed results must 
be in order to reject the null hypothesis of a significance test. 

 

• Must be set in advance ! 

 

• Ex: 
– For results with a 90% level of confidence, the value of alpha is 1 - 0.90 = 0.10.  

– For results with a 95% level of confidence, the value of alpha is 1 - 0.95 = 0.05. 

– For results with a 99% level of confidence, the value of alpha is 1 - 0.99 = 0.01. 

• So: 

– alpha  > pvalue    H0 is rejected      
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Statistics   Selection 

Filtered normalized 
counts
edgeR

Filtered normalized 
counts
DESeq

Filtered normalized 
counts
edgeR

Venn
Venn Diagramm

Filtered normalized 
counts

Filtered normalized 
counts

Filter
Union = OR

Filter
Intersection = AND
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Statistics   Selection 

Filtered normalized 
counts
edgeR

Filtered normalized 
counts
DESeq

Filtered normalized 
counts
edgeR

Venn
Venn Diagramm

Filtered normalized 
counts

Filtered normalized 
counts

Filter
Union = OR

Filter
Intersection = AND



Statistics   Selection 

• Conciliation 

– Venn 

• Stringency or Liberal ? 

• Intersection or Union ? 
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Statistics   Selection 

Filtered normalized 
counts
edgeR

Filtered normalized 
counts
DESeq

Filtered normalized 
counts
edgeR

Venn
Venn Diagramm

Filtered normalized 
counts

Filtered normalized 
counts

Filter
Union = OR

Filter
Intersection = AND



● Filtering 

 

– Intersection 

 
(DESeq <= 0.005 and edgeR <= 0.005) 

= 

(c25 <= 0.005 and c25 <= 0.005) 

 

– Union 

 
(DESeq <= 0.005 or edgeR <= 0.005) 

= 

(c25 <= 0.005 or c25 <= 0.005) 
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POST-ANALYSIS 
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Post-analysis 

Filtered normalized 
counts

Hierarchical clutering

PCA

Heatmap / 
Dendogrammes/ 

Clusters

Graphic representation



Post-analysis 

• Hierarchical Ascendant Clustering (HAC) 
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Post-analysis 

• Principal component analysis (PCA) 
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TP 

• Inputs 

67 

Gm12878_1 Gm12878_2 Hct116_1 Hct116_2 

NM_001003891 86 98 140 139 

NM_033200 1379 1639 3499 3583 

NM_152513 523 589 36 33 

NM_015330 7 8 17 19 

NR_046423 0 0 2 1 

Tabular Merge 

(Count table) Gm12878 Gm12878_1 

Gm12878 Gm12878_2 

Hct116 Hct116_1 

Hct116 Hct116_2 

Sample info 



TP 

68 

 Step 1a: Run DE analysis 
 Merge output file  count_table.tab 
 Method   DESeq 
 Replicates   Yes 
 Sample file   sample_info.tab 

 Step 1b: Run DE analysis 
 Merge output file  count_table.tab 
 Method   edgeR 
 Replicates   Yes 
 Sample file   sample_info.tab 
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 Step 2a: Filter 
 Filter    DESeq: Normalized counts used by DE method 
 With following condition c12<0.001 
 renaming   DESeq_filtered_0.001 

 Step 2b: Filter 
 Filter    edgeR: Normalized counts used by DE method 
 With following condition c9<0.001 
 renaming   edgeR_filtered_0.001 



 Step 3: proportional venn 
 title    Venn DESeq vs edgeR 
 size    540 
 input file 1   DESeq_filtered_0.001 
 column index  0 
 as name   DESeq 
 input file 2   edgeR_filtered_0.001 
 column index file 2  0 
 as name file 2  edgeR 

TP 
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 Step 4: Compare two Datasets 
 Header   Yes 
 Compare   DESeq_filtered_0.001 
 Using column  c1 
 again    edgeR_filtered_0.001 
 and column   c1 
 renaming   DESeq_edgeR_0.001_intersect 

GeneID Gm12878_1 Gm12878_2 Hct116_1 Hct116_2 baseMean baseMeanA baseMeanB foldChange log2FoldChange pval padj 

NM_000362 3.22842856563131 0 121.093917637026 119.024228879509 60.8366437705415 1.61421428281566 120.059073258267 74.376168354086 6.2167685212596 4.0444514012e-22 1.87087661676e-21 

NM_000395 1602.91478283595 1492.33069278071 0 0 773.811368904163 1547.62273780833 0 0 -Inf 0 0 

NM_000675 2061.35163915559 2174.92141324542 169.395424110222 172.289215284151 1144.48942294885 2118.13652620051 170.842319697186 0.080668970337534 -3.63205828514829 1.7901573375e-271 5.5251043152e-270 

NM_000714 62.9543570298106 66.9206588690899 186.402996812051 162.425328912921 119.675835405968 64.9375079494503 174.414162862486 2.68587705888339 1.42539326954625 5.9960030381e-07 1.81451156383e-06 

NM_000853 983.056498234735 973.026379956568 0 0 489.020719547826 978.041439095651 0 0 -Inf 9.2317105729e-269 2.6714285595e-267 

NM_000854 3.22842856563131 5.35365270952719 403.419624487395 381.403606354228 198.351328029195 4.29104063757925 392.411615420811 91.44905596657 6.51489637192119 4.39889217219e-70 4.73648231564e-69 

NM_000878 9452.83884016848 8953.98415668423 29.2530250471467 15.782218193968 4612.96456002346 9203.41149842636 22.5176216205574 0.002446660899602 -8.674970471167 0 0 

NM_000967 12035.5816926735 11883.770601973 8024.17280072315 7856.91429089709 9950.10984656669 11959.6761473233 7940.54354581012 0.663943023874214 -0.59086865256613 2.10881107797e-49 1.62717621517e-48 

NM_001001479 82.3249284235985 64.2438325143263 326.545395875126 345.236022993051 204.587544951525 73.2843804689624 335.890709434088 4.58338744606493 2.19641424575812 3.71387211639e-22 1.73689162938e-21 

NM_001001794 2435.84935276883 2264.59509613 490.498396720762 432.038223059875 1405.74526716987 2350.22222444941 461.268309890319 0.19626582758504 -2.34911909205406 2.1018359682e-112 2.9450507069e-111 

NM_001001852 4087.19056408924 3811.80072918336 5098.87029600848 5100.28684635067 4524.53710890794 3949.4956466363 5099.57857117958 1.29119741542766 0.368709595908137 3.52947010077e-13 1.33946205398e-12 

NM_001002034 111.38078551428 131.164491383416 2.72121163229272 6.57592424748668 62.960603194369 121.272638448848 4.6485679398897 0.038331547814236 -4.7053239347534 8.42691722418e-24 3.98128844208e-23 
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 Step 5: Cut 
 Cut columns   Yes 
 Tab    c1-c5 
 From    DESeq_edgeR_0.001_intersect 
 renaming   DESeq_edgeR_0.001_intersect_dataMatrix 

GeneID Gm12878_1 Gm12878_2 Hct116_1 Hct116_2 baseMean baseMeanA baseMeanB foldChange log2FoldChange pval padj 

NM_000362 3.22842856563131 0 121.093917637026 119.024228879509 60.8366437705415 1.61421428281566 120.059073258267 74.376168354086 6.2167685212596 4.0444514012e-22 1.87087661676e-21 

NM_000395 1602.91478283595 1492.33069278071 0 0 773.811368904163 1547.62273780833 0 0 -Inf 0 0 

NM_000675 2061.35163915559 2174.92141324542 169.395424110222 172.289215284151 1144.48942294885 2118.13652620051 170.842319697186 0.080668970337534 -3.63205828514829 1.7901573375e-271 5.5251043152e-270 

NM_000714 62.9543570298106 66.9206588690899 186.402996812051 162.425328912921 119.675835405968 64.9375079494503 174.414162862486 2.68587705888339 1.42539326954625 5.9960030381e-07 1.81451156383e-06 

NM_000853 983.056498234735 973.026379956568 0 0 489.020719547826 978.041439095651 0 0 -Inf 9.2317105729e-269 2.6714285595e-267 

NM_000854 3.22842856563131 5.35365270952719 403.419624487395 381.403606354228 198.351328029195 4.29104063757925 392.411615420811 91.44905596657 6.51489637192119 4.39889217219e-70 4.73648231564e-69 

NM_000878 9452.83884016848 8953.98415668423 29.2530250471467 15.782218193968 4612.96456002346 9203.41149842636 22.5176216205574 0.002446660899602 -8.674970471167 0 0 

NM_000967 12035.5816926735 11883.770601973 8024.17280072315 7856.91429089709 9950.10984656669 11959.6761473233 7940.54354581012 0.663943023874214 -0.59086865256613 2.10881107797e-49 1.62717621517e-48 

NM_001001479 82.3249284235985 64.2438325143263 326.545395875126 345.236022993051 204.587544951525 73.2843804689624 335.890709434088 4.58338744606493 2.19641424575812 3.71387211639e-22 1.73689162938e-21 

NM_001001794 2435.84935276883 2264.59509613 490.498396720762 432.038223059875 1405.74526716987 2350.22222444941 461.268309890319 0.19626582758504 -2.34911909205406 2.1018359682e-112 2.9450507069e-111 

NM_001001852 4087.19056408924 3811.80072918336 5098.87029600848 5100.28684635067 4524.53710890794 3949.4956466363 5099.57857117958 1.29119741542766 0.368709595908137 3.52947010077e-13 1.33946205398e-12 

NM_001002034 111.38078551428 131.164491383416 2.72121163229272 6.57592424748668 62.960603194369 121.272638448848 4.6485679398897 0.038331547814236 -4.7053239347534 8.42691722418e-24 3.98128844208e-23 



 Step 6a: Hierarchical Clustering 
 Data table file  DESeq_edgeR_0.001_intersect_dataMatrix 

 
 Step 6b: PCA 

 Data table file  DESeq_edgeR_0.001_intersect_dataMatrix 
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