
This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International
License. [link]

Managing Data
with Python

Session 101

1

June 2018

M. HOEBEKE
Ph. BORDRON
L. GUÉGUEN

G. LE CORGUILLÉ

http://creativecommons.org/licenses/by-nc-sa/4.0/

Outline : Session 101

From “Hello world” to your first Python Module

1. Introduction
2. Running Python programs
3. Reading Data from Text Files
4. Essential Data Types
5. Flow Control Instructions
6. Structuring Data
7. Handling Program Arguments
8. Using Modules
9. Writing Functions

10. Turning a Python Script into a Module
2

Why Python ?

3

P
Y
P
L

© TIOBE

Why Python ?

© DocSity (www.docsity.com)

4

http://www.docsity.com

Which version of Python ?

Two major versions are still actively maintained :
● The 2.x branch (2.7 being the last and latest) :

○ Found on many platforms as default version (including your workstations,
and the ABiMS cluster nodes)

○ Accessible unambiguously through the python2 command
● The 3.x branch (3.6 being the latest as of this writing) :

○ Available and installed by default but not configured as default on many
recent Linux distributions

○ Accessible unambiguously through the python3 command

Whenever possible, prefer the 3.x version
(even if the differences with 2.x are not obvious for this introductory course)

To check which version comes configured as default :

[mark@~] python --version
Python 2.7.14

Don’t worry : we’ll learn how to master which version to use
(even if the differences with 2.x are not obvious for this introductory course)

5

Writing & Running Python Programs

● A Python program is made of one or more sequences of properly formatted
lines of text containing instructions that can be executed by the Python
interpreter.

● Python programs are often stored in (text) files conventionally suffixed with .py
● The Python Interpreter translates your program code (text) into a

machine-readable representation

Create

gedit myprog.py

Run

python3 myprog.py

Fix bugs

gedit myprog.py

Improve

gedit myprog.py

Basic Python Development Process

Re-run

myprog.pyc

6

Writing & Running Python Programs

Using Python in interactive mode :
★ Done by running the interpreter without specifying à program file
★ Suitable for performing small checks or tests

[mark@~] python3
Python 3.6.3 (default, Oct 3 2017, 21:45:48)
[GCC 7.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> print("My First Python Line of Code")
My First Python Line of Code

The Python prompt

The code I’ve typed

The result of the evaluation of the code I’ve typed

7

Writing & Running Python Programs

Developing With an Integrated Development Environment (IDE) :
★ Platform Independent : Linux, Windows, MacOS X
★ Streamlines the Development Process : Project File Organization /

Coding / Debugging / Version Control / Dependency Management

https://www.jetbrains.com/pycharm/

8

https://www.jetbrains.com/pycharm/
http://www.youtube.com/watch?v=UHsT_ojuQjQ

Writing & Running Python Programs

Exercise 1

Write & run your helloworld.py script using PyCharm, based on the
previous screencast, with:

- the same project name : dmwp
- the same directory layout : src/ex01
- the same Python file (script) name : helloworld
- the script’s contents :

print('Hello world')

9

Writing & Running Useful Python Programs

A useful program :
1. Reads some data (from a file, from the network)
2. Processes the data (mainly in memory) to compute the wanted results
3. Generates the results as output (files)

Program memory

Input
File

Output
File

Input Data
Output
DataRead

Process

Write

10

Writing & Running Useful Python Programs

Issues to consider when writing a useful program :

1. What are the most appropriate data structures for the processing step(s) :
a. easy access to the elementary data needed for processing
b. logical grouping of elementary data chunks used together
c. minimal in-memory redundancy

2. How to fit the input data in these appropriate data structures :
a. what are the accepted/recognized input formats ?
b. are there already existing tools to read these formats ?
c. how to balance slow read operations with the program’s memory

footprint ?

3. What are the requirements for the output file(s) :
a. what is the expected output format(s) ?
b. are there already existing tools to write these formats ?
c. when is it possible to start writing the results (at the end only, or are

there intermediary results available early-on) ?

11

Reading Data from Text Files

A Text File contains a series of lines. Each line is made of a series
of characters followed by a newline character.

>CK_Syn_RCC307_0001:174-1313:1|dnaN
MKLVCSQAELNGSLQLVSRAIAGRPTHPVLANVLVTADAAAGRISLTGFDLSLGIQTSFA
AVVESSGAITLPAKLFTDIVSRLPADGPLTLACPEGEEQTELSALTGSYQMRGLSAEDFP
DLPLAQNGQPLLLSGEAFAEGLRSTLFASSGDESKQILTGIHLKVEDGGLEFAATDGHRL
AVRRNGAGGQEGAESFAVTVPARSLRELERLLSARPSEESISLFCDRGQVVFLWADQVLT
SRTLEGTYPNYGQLIPESFARTISLERKPFIAALERIAVLADQHNNVVKLTADPASGQLQ
LSADALDVGSGSESLAAQINGEEIAMAFNVRYLLEGLKAMADATVRLNLNSPTSPAVLSA
DEDGEAGFTYLVMPVQIRS*
>CK_Syn_RCC307_0002:1314-2042:1|SynRCC307_0002
MPLPRQILISELLRSRLRDELGQDLGVGHQVWMHPPCHRLLGWSSRPSAFGPRRSVWRLD
(...)

line 1 line 2

12

Reading Data from Text Files

In Python, reading a text file can be done as follows :

infile = open('/path/to/my/file.txt')
data = infile.readlines()
infile.close()

● Line 1 :
○ The open() function is called to open(!) the input file, called

/path/to/my/file.txt
○ A reference to the opened file is stored in a variable called infile

using the assignment operator (equals sign)
● Line 2 :

○ The readlines() function is applied to the infile reference using
the dot operator. It reads the file contents, line by line and returns the
result.

○ The result is stored in the data variable.
● Line 3 :

○ The close() function is applied to the infile reference to free any
resources (memory) used for reading the file.

13

Variables : Scalar Types

Now, how can we access the contents of the file, a.k.a what is the nature of
the data variable ?

Python variables come in various types, among which :
Scalar types, used to store a single value, including :

a. String variables used for storing letters, words, texts…

b. Numerical variables used for storing numbers :
i. Integer values :

ii. Floating point values :

c. Boolean variables, used for storing True or False values

language = 'Python.'

one = 1

bioInformaticsIsEasy = True

14

pi = 3.141592

Variables : Container Types

Container types (or collections), are used to store several elements of any
type. They include :

a. Lists - used to store indexed collections of elements

b. Tuples - used to store immutable indexed collections of elements

c. Dictionaries - used to store {key:value} pairs

d. Sets - used to store unordered unique elements

weekendDays = ['Saturday','Sunday']

languageCodes = {'FR' : 'French',
 'EN' : 'English'}

15

 seasons = set('Spring','Summer',
 'Fall','Winter')

timeSpans = ('AM','PM')

The actual type of a variable can be determined using the type() function :

will display :

Variables : Type Determination

Variables are created when they are first assigned a value using the
assignment operator (=).

In our example, infile is created on completion of line 1, and data is
created on completion of line 2.

Variables are “destroyed” when they are no longer visible (more on that later)

>>>data=[1,2,3]
>>>type(data)

class<'list'>

Don’t bother just yet

16

Variables : Type Conversions

Type conversions (when they make sense) are possible using the destination
type name as function :

- any scalar type can be converted to a string variable, using str()
- integer and float types can be inter-converted using int() or float()
- when applicable, strings can be converted to integers or floats using

int() or float()

>>>booleanTrue = True
>>>booleanString = str(booleanTrue)
>>>booleanString
'True'
>>>floatPi = 3.141592
>>>strPi = str(floatPi)
>>>strPi
'3.141592'
>>>intPi = int(floatPi)
>>>strExp = '2.71828'
>>>floatExp = float(strExp)
>>>floatExp
2.71828

17

Variables : Using Lists

List elements are accessed through their numerical index, starting with zero,
as in :

Negative indices can be used to access elements from the end of the list :

List slices can be extracted using colons.

Warning : the slice does not include the element with the upper index.
Either of the two indices (or both!) can be ommitted:

- without lower index, the slice starts at the beginning of the list.
- without upper index, the slice extends to the end of the list

firstLine = data[0]

lastLine = data[-1]

firstThree = data[0:3]

allButLast = data[:-1]
completeCopy = data[:]

18

Variables : Using Lists

Lists grow automatically in size, when adding new elements with the append()
function :

Or by adding other lists with the extend() function:

New lists can be built by using the addition operator (+)

weekEndDays.append('Friday')

extraLongWEs = weekEndDays + ['Thursday']

weekEndDays.extend(['Monday','Tuesday'])

The length of a list can be determined with the len() function :

numberOfWEDays = len(weekEndDays)

19

Working with Text Files

Exercise 2

Write a countlines.py script (in the src/ex02 folder of your project)
printing the number of lines in the Syn_RCC307.faa file located in your
data directory.

Hint - the path to the data file is :
'../../data/fasta/Syn_RCC307.faa'

20

Variables : Using Strings

Strings share some basic features with lists, such as :
- Bracket operators to access elements and/or slices

- String concatenation with the + operator

- Use of the len() function

firstLetter = stringExample[0]

helloWorld = 'Hello ' + 'World'

>>>len(helloWorld)
11

Strings can be built from lists using the join() function

>>>fruitString = ', '.join(['apples','oranges','bananas'])
>>>type(fruitString)
<class 'str'>
>>>fruitString
'apples, oranges, bananas'

21

Strings (as almost any variables) can be modified using the assignment
operator =

Variables : Using Strings

Strings can be separated into list elements using the split() function

>>>fruitList = fruitString.split(', ')
>>>type(fruitList)
<class 'list'>
>>>fruitList
['apples','oranges','bananas']

22

>>>greetings = 'Hello'
>>>greetings = greetings + ', world.'
>>>greetings
'Hello, world.'

Lists, Loops and Block Structures

23

A straightforward way to access each element of a list in turn relies on the for
loop, written as follows :

for loopVariable in listVariable :
do some clever processing
using loopVariable
print(loopVariable)

Instruction block executed for each successive element in listVariable. The values of
the successive elements are assigned to loopVariable.

for loop keywords

in
de

nt
at

io
n

Each line of the instruction block is indented (space(s) or tab) wrt. the line
with the for … in … : instruction.

Lists, Loops and Block Structures

24

A basic loop example :

>>>> for day in ('Saturday','Sunday') :
... print('On '+day+' I can sleep late.')
...
On Saturday I can sleep late.
On Sunday I can sleep late.

Lists, Loops and Block Structures

25

An index based loop :

>>>> for index in range(0,10) :
... print(index)
...
0
1
2
(...)
8
9 The range(begin,end) function generates integers

from begin to end EXCLUDED

A First Loop

Exercise 3

Write a join.py script (in the src/ex03 folder of your project) building a
list with the following strings :

'Union','of','the','Snake'

Then, using a for loop, concatenate the list elements to form a string
where the words are separated with a space character.
After the loop has completed, print the value of the string, which should
be :

'Union of the Snake '

How would you remove the trailing space ?

26

Block Structures and Conditionals

27

The most often used conditional control flow structure is the if (else)
construction, which is build as follows :

if boolean expression :
boolean expression is True here
print('Condition satisfied.')

else :
boolean expression is False here
print('Condition not satisfied.')

if conditional keywords

in
de

nt
at

io
n

Optional Instruction block executed when the boolean expression evaluates to False.

Instruction block executed when the boolean expression evaluates to True.

optional else clause

Conditionals and Boolean Expressions

28

Boolean expressions are expressions whose evaluation yields either True or
False.
They very often rely on one of the following operators :

- the equality operator : ==

- the inequality operator : !=

- comparison operators : > (greater than), >= (greater or equal), < (lesser
than), <= (lesser or equal)

if language == 'Perl' :
print("You're in the wrong class, mate.")

if language != 'Python' :
print("You're in the wrong class, mate.")

if distanceKm <= 1.0 :
print("You're better of walking.")

Conditionals and Boolean Expressions

29

Caution : don’t try to use operators with incompatible types

>>> distanceKm='One'
>>> if distanceKm <= 1.0 :
... print("You're better of walking.")
...
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>

TypeError: '<=' not supported between instances of 'str'
and 'float'

Conditionals and Boolean Expressions

30

Boolean expressions can be combined with logical operators : and and or
- the conjuction operator : and

- the disjunction operator : or

Boolean expressions can be negated using the not operator :

if distanceKm <= 1.0 and weather == 'Sunny' :
print("You're better of walking.")

if winspeedKmH >= 100.0 or weather == 'Overcast' :
print('Consider taking a cab.')

if not weather == 'Sunny' :
print('An umbrella might be useful.')

Conditionals and Boolean Expressions

31

- Logical operators have priorities : not > and > or

- When in doubt, using parentheses may lift ambiguities

if distanceKm <= 1.0 and weather == 'Sunny' or weather == 'Mild' :
print("You're better of walking.")

if (distanceKm <= 1.0 and weather == 'Sunny') or weather == 'Mild' :
print("You're better of walking.")

if distanceKm <= 1.0 and (weather == 'Sunny' or weather == 'Mild') :
print("You're better of walking.")

Is interpreted as

When the intended expression would be

Conditionals and Loop Structures

32

Repeatedly executing an instruction block while a condition is verified

while boolean expression :
do some clever processing
re-evaluate terms of the
boolean expression

Instruction block executed while the boolean epxression evaluates
to True.

while keywords

in
de

nt
at

io
n

Each line of the instruction block is indented (space(s) or tab) wrt. the line
with the while … : instruction.

Conditionals and Loop Structures

33

A basic while expression :

>>> LAPLENGTH=42.0
>>> totalDistance=0.0
>>> laps=0
>>> while totalDistance < 100.0 :
... laps=laps+1
... totalDistance=totalDistance+LAPLENGTH
...
>>> print(laps)
3

Choosing the Loop Structure

34

Use the for loop when the loop variable is generated from a
collection (list, set, tuple, dictionary keys) :

=> the number of elements to loop over is known when
starting the loop.

Use the while loop when the instruction block execution
depends on the calculation of an expression :
=> the number of times the instruction block is executed is
not known beforehand.

Jumping to the Next Iteration

35

The continue keyword causes execution skip the
remainder of the current iteration to resume at the start of
the next iteration :

for number in range(0,100000) :
Skip all even numbers
if number % 2 == 0 :

continue
Perform other compute intensive
checks for prime numbers

For even numbers, we can skip the remaining
checks and start over with the next number.

Breaking out of a Loop Structure

36

The break keyword causes execution to resume
immediately after the loop structure :

names=['Alice','Bob','Charlie',...]
found=False
for name in names :

if name == 'Waldo' :
found=True
break

if found == True :
print('I found Waldo!')

We don’t need to carry on looking for Waldo
anymore, and can exit the loop straightaway.

37

There is even a Python idiom relying on a perpetual while and using the break
instruction to end the while block :

More loop controls : using while

while True :
outcome = perform_some_sophisticated_calculation()
if outcome == 'unexpected' :

break
Code following the while block

I’m (almost) a Bioinformatician now

Exercise 4

Write a readseq.py script (in the src/ex04 folder of your project) taking
as input, the already used file:

'../../data/fasta/Syn_RCC307.faa'

and building :
- a list (called seqIds) with the sequence identifiers
- a list (called sequences) with the sequence amino acids.

Check that at index 1234 :
- the identifier is :

>CK_Syn_RCC307_1247:1103206-1103493:1|SynRCC307_1247
- and the length of the amino acid sequence is : 96

Caution : when reading a line, Python also reads (and stores) the newline
character ending the line.

38

39

When Structuring Data Makes Sense

In the previous exercise, information about a single sequence was stored in two
separate collections :

- One collection for the sequence identifiers
- One collection for the amino acids

The relationship between the two was implicit through the use of an identical
index.

It makes more sense to explicitly link an identifier with its amino acids using a
dictionary.

One possibility, usable when the identifiers are unique :
- The dictionary key is the sequence identifier
- The associated information is the amino acid sequence.

{ '>CK_Syn_RCC307_1247:1103206-1103493:1|SynRCC307_1247' :
'LSMAEQNSSSASLLLSALTGAAVGAAGLTWWLLSRAERRQALGDQFKRLGLNGAPTNGSSAQGSPENLEQKVNRLNL
AIEDVRRQLESMAPESSN*' }

40

Dictionaries : Basic Usage

Creating an empty dictionary :

Adding an element to a dictionary :

- dictKey is often a string variable,
- dictInfo can be a variable of any type.

For example when both dictKey and dictInfo are strings:

Removing an existing element from a dictionary :

Retrieving the number of elements of a dictionary :

sequenceInfo = {}

sequenceInfo[dictKey] = dictInfo

sequenceInfo['>sample_seq_id'] = 'ADGKORML(...)'

del(sequenceInfo[dictKey])

totalSequences=len(sequenceInfo)

41

Dictionaries : Basic Usage

Checking if a dictionary contains a specific key with the in operator :

More frequently used associated to the not operator to check whether a key is
not already present in a dictionary :

Retrieving the list of keys of a dictionary :

Can be used to loop over dictionary entries :

if seqId in sequenceInfo :
print(seqId+' is already known!')

if seqId not in sequenceInfo :
sequenceInfo[seqId] = residues

dictKeys = sequenceInfo.keys()

for dictKey in sequenceInfo.keys():
residues = sequenceInfo[dictKey]

42

Dictionaries : Basic Usage

Retrieving the list of values of a dictionary :

Can be used to loop over dictionary entries :

Looping over complete dictionary items :

allResidues = sequenceInfo.values()

totalResidues = 0
for seqResidues in sequenceInfo.values():

totalResidues = totalResidues + len(seqResidues)

for (id,residues) in sequenceInfo.items():
print('Seq.: '+id+' has '+len(residues)+' aa.')

I’m (almost) a Bioinformatician now

Exercise 5

- Copy readseq.py to directory src/ex05/readseq.py

- Change readseq.py to use a single sequence dictionary instead of a
pair of lists.

- Check that there are no duplicated sequence identifiers in the data
file.

- Check that the length of the sequence with identifier

>CK_Syn_RCC307_1247:1103206-1103493:1|SynRCC307_1247

is indeed 96.

43

44

Handling Command-Line Arguments

The current version of our script has one major shortcoming: the name of the
data file is hard coded. Meaning that in order to parse another data file, we have
to modify our code !

To overcome this flaw, it would be nice to be able to specify the name of the
data file as argument to our script as in :

This can be done using a module that comes standard with Python.

[mark@~] python3 readseq.py mysequences.faa

45

Using Python Modules : argparse
A Python module is a package or library providing a set of features aimed to be
reused across programs (ex. biopython for bioinformatics, numpy for
scientific computation, networkx for graph manipulation…)

These features can include:
- data structures
- functions
- classes (which we’ll see later on)

To access the features in a Python program, the module needs to be imported
in the program.

To import the complete set of features of a module in a Python program, the
import instruction is used. The features included in the module are then
accessed in the Python program by prefixing the feature name with the module
name :

import moduleName
…
result=moduleName.featureName()

46

Using Python Modules : argparse

It is also possible to import specific features supplied by a module by using the
from … import instructions. Accessing the feature can then be done directly,
without prefixing it with the module name :

from moduleName import featureName
…
result=featureName()

The former method is recommended over the latter one. It is less subject to
name collisions which can occur when two modules define a feature with the
same name.
Its drawback is that it imports the whole contents of the module. But that’s
usually not a problem.

Each standard module is duly documented on the Python reference
documentation web site :

https://docs.python.org

Double-check however that you are reading the documention matching your version of Python
https://docs.python.org/3/howto/argparse.html is not https://docs.python.org/2/howto/argparse.html

https://docs.python.org
https://docs.python.org/fr/3.5/howto/argparse.html
https://docs.python.org/2/howto/argparse.html

47

Using Python Modules : argparse

The argparse module provides all that’s needed to make use of command-line
arguments inside à Python program, and relies on a three step method :

1. Declare the structure of the possible command-line arguments and options.
2. Call a function that fills the structure by analyzing how the program was

run.
3. Use the structure to retrieve values that were provided for arguments and

options on the command-line.

48

Using Python Modules : argparse

Step 1 : define the ArgumentParser

Create the parser using the ArgumentParser()(special) function. Use a named
argument - description - to give some human readable information on the
program’s purpose.

Declare that our program will take an argument (the input file with the fasta
sequences) using the add_argument() function. This argument will be
accessible in our program through (the dictionary key) infile. Add some help
text describing the argument.

import argparse
…
parser=argparse.ArgumentParser(description='Read sequences
from a multi-fasta file')
parser.add_argument('infile',help='multi-fasta input file')

49

Using Python Modules : argparse

Step 2 : Tell the parser to analyze the command-line.

The parse_args()function will:
- check whether the command-line matches the previously declared

structure, and generate an error message if not.
- build a dictionary-like structure where the “keys” will be named after the

arguments that were declared.

The resulting dictionary-like structure will be stored in the args variable.

args=parser.parse_args()

Step 3 : Use the dictionary-like structure to retrieve values of arguments passed
on the command-line

print('The input file is: '+args.infile)

In fact it’s an object. More on that later

Handling Command-Line Arguments

Exercise 6
- Copy readseq.py to src/ex06/readseq.py
- Change readseq.py to use the argparse module to handle a single

command-line argument : the name of the file with the sequences.
- Use PyCharm to build three run-configurations for readseq.py :

- A configuration with the already used sequence file as argument.
- A configuration with no arguments (to assess that argument checking

is done correctly by argparse)
- A configuration with a -h argument (to check the help output that is

automagically generated by argparse)

50

http://www.youtube.com/watch?v=Cx1rzC8xRtM

51

Adding Depth to Dictionaries

Until now, dictionary entries used only scalar types (strings) as element values.
Often, for efficiency reasons, we want to access several chunks of information
using a single key.

For instance, a sequence, identified by a fasta identifier, can be described by its
nucleotide sequence, its amino acid sequence, their respective lengths, the
GC-percent, the codon-usage frequencies and so on.

To handle such “records”, the dictionary value is itself a dictionary where the
keys are the descriptors or attributes, and the values, the… values(!).

sequenceEntry = { 'nucleotides' : 'ATAGCGT...',
 'nucleotidelength' : 2562,
 'residues' : 'GIEDKD...',
 'residuelength' : 854,
 'gcpercent' : 61.0
}

sequenceInfo[sequenceId]=sequenceEntry

52

Adding Depth to Dictionaries

When using record-like structures as dictionary elements, keep in mind that:

- the descriptor names are arbitrary and subject to spelling inconsistencies
between records.

- there is no guarantee that all descriptors are initialized for each record.

sequenceEntry = { 'nucleotydes' : 'ATAGCGT...',
...

}
sequenceInfo[sequenceId]=sequenceEntry
for (id,info) in sequenceInfo.items() :

print(info['nucleotides'])

Will raise an error when processing
the sequenceEntrywith the typo.

53

Adding Depth to Dictionaries

Best practice 1 : Use “constant variables” for record descriptors instead of
plain strings. By convention, constant variables are variables whose value does
not change after initialization. They are written in uppercase.

Best practice 2 : Initialize all descriptors when creating a dictionary entry. For
descriptors whose value cannot be determined at creation time, use the special
None value.

NUCLEOTIDES_KEY='nucleotides'
RESIDUES_KEY='residues'
GCPERCENT_KEY='gcpercent'
...
sequenceEntry = { NUCLEOTIDES_KEY : 'ATAGCGT...',

 RESIDUES_KEY : 'GIEDKD...',
 GCPERCENT_KEY : None,

...
}

Adding Depth to Dictionaries

Exercise 7

- Copy readseq.py to src/ex07/readseq.py
- Enhance readseq.py to use a record-like structure for storing the

residues.
- Use “constant variables” to define and access record descriptors.

54

55

argparse : Arguments vs. Options

As seen before, program arguments are words following the command (script)
name. Mapping of program arguments to variables in a Python script is done
according to the position of the argument in the argument list. Arguments are
mandatory.

Program options are composite : they include an option name (in short or long
form) and an option value. Their relative positions on the command-line are not
important. They can be optional(!) or required.

[mark@~] python3 readseq.py -n mynucsequences.fna -r \
myaasequences.faa

[mark@~] python3 readseq.py --residues \
mynucsequences.faa --nucleotides myaasequences.fna

56

argparse : Arguments vs. Options

In argparse, options are declared in the same way arguments are, with the
following differences :

- The variable name must start with a dash (for the short form) or a double
dash (for the long form)

- A boolean required parameter can be used to make an option mandatory (or
optional)

import argparse
…
parser=argparse.ArgumentParser(description='Read sequences
from a multi-fasta file')
parser.add_argument('-n','--nucleotides',help='multi-fasta
input file with nucleotide sequence',required=True)

57

argparse : Arguments vs. Options

argparse also handles the special case of flags : options without a value,
whose mere presence on the command-line is enough. For example:

- the -v (or --verbose) flag to generate a lot of output on the program’s
progress

- the -d (or --debug) flag to run the program in debug mode.

Flags are declared as ordinary options, with the addition of a specific action
named parameter to describe what to do when the option is present.

import argparse
…
parser=argparse.ArgumentParser(description='Read sequences
from a multi-fasta file')
parser.add_argument('-v','--verbose',action='store_true')
args=parser.parse_args()
if args.verbose is True :

print('Entering verbose mode')

Handling Command-Line Arguments

Exercise 8

- Copy readseq.py to src/ex08/readseq.py
- Extend readseq.py to use two options :

- an ‘-n’ (‘--nucleotides’) option to specify the fasta input file containing
the nucleotide sequences,

- an ‘-r’ (‘--residues’) option to specify the fasta input file containing the
amino acid sequences.

- read the two files, and store information about the two sequence types
in a single record-structured dictionary

- Allow the use of a -v (‘--verbose’) option printing :
- the total number of sequences read,
- the number of sequences without an associated nucleotide sequence,
- the number of sequences without an associated residue sequence.

- Run the program using files :
- '../../data/fasta/Syn_RCC307.fna' as nucleotide input file.
- '../../data/fasta/Syn_RCC307.faa' as amino acid input file.

58

59

Organising Code in Functions: Definitions

The latest version of our script contains two code sections that are almost
identical: they read a multi-fasta sequence file and store the result in a
dictionary record structure.

Duplicating code is evil !

Python offers a construction that allows us to group instruction blocks that can
be executed (called) at will later on. The execution can also be parameterized
with arguments. Such a construction is called a function.
The location where the function is declared, with its arguments and its code is
called the function definition and has the following syntax :

def myFunc(<arguments>) :
do some clever processing
inside the function

fu
nc

tio
n

de
fin

iti
on

ke

yw
or

d

function
name

argument
list

60

Organising Code in Functions: Calling a Function

The location(s) in the program where we want the function to be executed are
called the function calls. The syntax of a function call is:

A function printing ten times “Hello” could be written as:

And called with:

myFunc(<argument values>)

function
name

argument
value list

def tenTimesHello() :
for index in range(0,10) :

print('Hello')

tenTimesHello()

61

Organising Code in Functions: Arguments

The use of arguments allows us to parameterize the function execution. Each
argument in the argument will be given a (potentially different) value on each
function call.

A function printing ten times the message given as argument could be written
as:

And called with:

or with:

def decaPrint(message) :
for index in range(0,10) :

print(message)

decaPrint('Hello')
prints ten times ‘Hello’

decaPrint('Goodbye')
prints ten times ‘Goodbye’

62

Organising Code in Functions: Arguments

When defining a function, arguments may be given a default value. Arguments
with a default value may be omitted from function calls.

A function printing a message given as first argument a number of times
specified in the second argument, with a default value can be written as :

And called with:

def spamPrinter(message,repeats = 10) :
for index in range(0,repeats) :

print(message)

spamPrinter('Python Rulez',100)
prints 100 times ‘Python Rulez’

spamPrinter('Python is easy')
prints 10 times ‘Python is easy’

spamPrinter('Python is a snake',repeats=3)

prints 3 times ‘Python is a snake’

63

Organising Code in Functions: Return Value

Functions can return data to the caller on completion with the return
statement :

When calling such a function, the result can be stored in a variable:

def myFunc(<arguments>) :
result = None
do some clever processing
inside the function and
store the result in the
result variable
return result

myFuncResult = myFunc(<arguments>)

64

Organising Code in Functions: Return Value

A function returning the sum of the list elements given as argument can be
written as :

And called with:

def sumList(values) :
total = 0
for element in values :

total = total + element
return total

myListTotal=sumList([1,2,3,4,10,20,100,2000])

stores the sum of 1,2,3,4,10,20,100,2000 in variable myListTotal

65

Organising Code in Functions: Argument Changes

Functions can also modify the contents of their arguments. For arguments are
of scalar types (strings, numbers, booleans), the modification is kept local to
the function block. For arguments of container types, the modifications will
persist after the function has returned.

def myFunc(intArg,listArg) :
intArg = intArg + 10
listArg.extend(['A','Ton','of','Pie'])

intVal = 1
listVal = ['I','Like','To','Eat']
myFunc(intVal,listVal)
print(intVal) # prints 1 : not changed outside myFunc.
print(listVal) # prints ['I','Like','To','Eat','A',
 # 'Ton','of','Pie'] : change persists.

Functions

Exercise 9

- Copy readseq.py to src/ex09/readseq.py
- Enhance readseq.py to :

- define a function capable of reading the contents of a multi-fasta file.
- call the function for reading the nucleotide input file
- call the function for reading the amino acid input file

- Run the program using files :
- '../../data/fasta/Syn_RCC307.fna' as nucleotide input file.
- '../../data/fasta/Syn_RCC307.faa' as amino acid input file.

66

67

Organising Code : From Scripts to Modules

A set of functionalities should typically be reusable across various scripts. Until
now, our script file (readseq.py) contains a single useful function
(readFastaSequencesFromFile), and the “main” code calling the function
parameterized with command-line arguments.

If we want to reuse the readFastaSequencesFromFile function in other
scripts, without cutting & pasting its definition !!!, we can store it in a module.

A module contains a collection of definitions (constants, classes) and
declarations (functions). It should not contain any “main” code that will be
directly executed when the module file is loaded.

In order to be able to import a module, it has to be located in one of the
directories where the Python interpreter looks for modules.

With PyCharm, these directories have to be marked explicitly. This is done by
right-clicking on the directory, and choosing Mark Directory As -> Sources
Root.

68

Organising Code : Making Scripts importable

A Python script may contain a mix of definitions (constants, functions, classes)
and of instructions at the outermost scope. These instructions are executed
whenever the script is loaded either to be run as a script or through an import
instruction.

This may not be desired inside scripts that want to access functions defined in
the script (using import) but don’t want the code in the outermost scope to be
run.

USEFUL_CONSTANT='useful value'

def usefulFunction(args):
…

usefulFunction('argval')
This function call gets executed whenever the script

module is imported.

69

Organising Code : Making Scripts importable

A special variable (__name__), maintained by the Python interpreter allows to
check if a Python file is loaded as a script to be run or as a module.

In the former case, the value of __name__ is '__main__' and the test can be
written as:

It is a highly recommended practice to use the __name__ based test in every
Python file so as to promote the reuse of its contents.

USEFUL_CONSTANT='useful value'

def usefulFunction(args):
…

if __name__ == '__main__':
usefulFunction('argval')

This function call gets only executed when the file is
loaded as a script. Not when imported as a module.

70

Organising Code : Making Scripts portable

Python programs and modules are written by people all over the world on
various platforms. They do not always use the same character encoding
standards. To lift any ambiguity regarding these standards, Python encourages
the use of a specially formatted comment at the beginning of scripts and
modules.

This comment looks like:

And will allow you to use any special character (most notable those with
accents), either by directly typing them the script or module, or by printing
strings read from a file and containing these characters.

-*- coding: utf-8 -*-
The name of the encoding standard

71

Organising Code : Making Scripts executable

On Linux/Unix systems, Python scripts can be run directly from the
command-line (i. e. not as arguments given after the name of the python
interpreter), provided the following two conditions are met:

1. They must be executable (does chmod +x ring a bell ?)

2. They must specify where to find the Python interpreter to run the contents
of the script. This is done by putting a special comment as the first line of
the script :

This will run the /usr/bin/env command and tell it to look for a program
named python3. That program will then be used to run the contents of the
script.

The advantage is that this ensures that the script will be run by a Python 3.x
interpreter but it lets the script’s user configure her environment to select which
version of the Python 3.x interpreter to use.

#!/usr/bin/env python3

72

Organising Code : A Script Template

To sum up, this is what a well-behaved script or module should look like:

#!/usr/bin/env python3
-*- coding: utf-8 -*-

lots of useful python code here:
constants/variables
functions classes
classes

if __name__ == '__main__' :

process arguments using argparse
use classes, functions and
constants/variables defined above
or imported from other modules.

73

Modules: Efficiency Concerns

The method we use to read data from sequence file has a major drawback: it
loads the whole contents of the file at once in memory.

This does not scale well!

And is not suitable to figure in a decent module. Python provides an idiom to
perform efficient line oriented data reading using the with … as …
construction which can be used as follows :

The with … as … construction starts a new block. The (file) variable specified
after the as keyword is usable inside this block. At the end of the block, the
variable goes out of scope and the file is automatically closed.
The for loop reads the file one line at a time needing memory to store only a
single line.

with open('myfile.dat') as datafile :
for line in datafile :

process the contents of line

Modules

Exercise 10

- Copy readseq.py to src/ex10/readseq.py
- Create a module named sequencetools.py containing the

readFastaSequencesFromFile code, and the definitions it relies on.
- Enhance the code reading the sequence data from a file
- Add comments at the module and function level
- Modify the readseq.py script to make use of the sequencetools module.
- Configure PyCharm to define the src/ex10/ directory as a source

directory.

- Run the program using files :
- '../../data/fasta/Syn_RCC307.fna' as nucleotide input file.
- '../../data/fasta/Syn_RCC307.faa' as amino acid input file.

74

