
This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International
License. [link]

Managing Data
with Python

Session 201

1

June 2018

M. HOEBEKE
Ph. BORDRON
L. GUÉGUEN

G. LE CORGUILLÉ

http://creativecommons.org/licenses/by-nc-sa/4.0/

Outline : Session 201

Object Oriented Python

0. A Quick Refresher
1. What is Object Oriented Programming ?
2. Designing Classes & Implementing Methods
3. Using Inheritance
4. Unit Testing Your Code
5. Handling Exceptions
6. Tracing Execution With Loggers
7. Debugging under PyCharm

2

Outline : Session 201

Object Oriented Python

0. A Quick Refresher
1. What is Object Oriented Programming ?
2. Designing Classes & Implementing Methods
3. Using Inheritance
4. Unit Testing Your Code
5. Handling Exceptions
6. Tracing Execution With Loggers
7. Debugging under PyCharm

3

Python’s main data types (1)

1. Scalars :

2. Containers : lists

A Quick Refresher

myStringVar='Hello, World' # A string variable
myIntVar=42 # An integer variable
myFloatVar=3.14152 # A floating point variable
myBoolVar=True # A boolean variable

myListVar=['Hello', 'World']
myListVar[1]='Universe'
myListVar.append('and Beyond')
myListVar.extend(['but','not','too','far'])
myListVar=myListVar[0:1]+['Cruel']+myListVar[3:]+

myListVar[1:2]

Python’s main data types (2)

3. Containers : tuples (a.k.a : read-only lists)

4. Containers : dictionaries

A Quick Refresher

myDictVar={'lastname' : 'Van ROSSUM',
 'firstname' : 'Guido'}

myDictVar['employer']='Google Inc.'
myDictVar['colors']=['red','green','blue']
myDictVar['address']={'country' : 'USA',

 'city' : 'Mountain View'}
myDictVar['address']['street']='Snake Drive'

myTupleVar=('Hello', 'World')
myTupleVar[1]='Universe'
myTupleVar.append('and Beyond')
myTupleVar.extend(['but','not','too','far'])
myTupleVar=myTupleVar[0:1]+['Cruel']+myTupleVar[3:]+

myTupleVar[1:2]

A tuple can’t be modified !

Looping constructions
1. Looping over a list or tuple :

2. Looping using an index :

3. Looping over dictionaries :

A Quick Refresher

for fruit in ('apple', 'banana','orange') :
fruitJuice=fruitJuice+press(fruit)

for year in range(2001,2019) :
computeVacationDaysInYear(year)

for seqId in sequenceDict.keys() : # enumerate keys
sequence=sequenceDict[seqId]

for sequence in sequenceDict.values() : # enumerate values
totalLength=totalLength+len(sequence)

for (id,seq) in sequenceDict.items() : # enumerate both
print('The sequence of: '+id+' is '+seq)

Using Functions

Defining a function :

Calling a function :

Modifications to scalar function arguments inside a function have no effect
outside the function.

Modifications to non-scalar (lists, dictionaries…) function arguments inside a
function persist even when de function has completed execution.

A Quick Refresher

mySum=computeSum(12,34)

def computeSum(a,b) :
sum=a+b
return sum

Using Modules

Importing a module with all its components:

Selectively importing components from a module:

A Quick Refresher

import moduleName
…
res=moduleName.computeSomethingSmart(data)

from moduleName import computeSomethingSmart
…
res=computeSomethingSmart(data)

Outline : Session 201

Object Oriented Python

0. A Quick Refresher
1. What is Object Oriented Programming ?
2. Designing Classes & Implementing Methods
3. Using Inheritance
4. Unit Testing Your Code
5. Handling Exceptions
6. Tracing Execution With Loggers
7. Debugging under PyCharm

9

Until now, we have been writing Python scripts using procedural programming :

- We used more or less elaborate data structures which we stored in
variables.

- And we used functions to which these variables were passed as arguments,
or returned at the end of the functions to read or modify the variable
contents, or to build new variables.

Object Oriented Programming Principles

seqInfo=sequencetools.readFastaFromFile(filename)
...
seqInfo=sequencetools.computeSequenceLengths(seqInfo)
...
sortedIds=sequencetools.sortSequencesByLength(seqInfo)
...

This is more or less OK while :
- We are the unique author of the code using our data structures.
- We remain consistent in the design and usage of our data structures (we use

constant variables for dictionary keys, we don’t change the type of data that we store
with a given key in the dictionary...)

In short :
- People (ourselves included) wanting to (re)use our code need to understand how we

built the data structures, both for reading the data they contain, and for adding new
data (to ensure that no existing data is accidentally overwritten).

For example :
- James wants to compute the GC% of nucleotidic sequences.
- He’s less than eager to write functions for reading sequences from files.
- Francis told him about that handy sequencetools package developed by Rosalind.
- To use it, James will have to read through the code of the module to learn :

- What function to call to read sequences from a file
- How the data structure storing the sequence data is organised to access

the actual letters of the sequence.
- And Rosalind can’t change her data structure anymore without risking to break

programs relying on it written by Francis or James.

There must be a better way to design reusable and
extensible programs!

Object Oriented Programming Principles

Object Oriented Programming :
Trying to mimic the way the “real world” works.

The “real world” is made of objects :
- The apple I’m carrying in my bag.
- The car I just parked outside.
- My son I just dropped off at school.

And I’m constantly interacting with or operating on these objects :
- To CHECK IN WHAT STATE they are :

- Was the apple I took the shiniest ?
- Was there enough fuel in my car for this morning’s trip ?
- Did my son brush his teeth after breakfast ?

- To MODIFY THEIR STATE if needed :
- I really need to wash this apple before eating it.
- After the trip, my car will have a little less fuel and a little more mileage.
- Give my son a compliment or a blame.

The keywords here are : OBJECTS, STATE, OPERATIONS

Object Oriented Programming Principles

A tentative definition of an object

An object is characterized by its state : A SET OF PROPERTIES

- An apple has a weight, a color, a price, belongs to a variety…
- A car has a brand, a color, a price, an owner, an engine…
- My son has a specific eye color, hair color, age, preferred videogame…

And by the SET OF OPERATIONS that it is capable of supporting :

- An apple can be bought, sold, eaten..
- A car can be driven from one place to another, be sold, be repaired…
- My son can take the bus, go for a swim, tidy his room (really ?)...

Object Oriented Programming Principles

A tentative representation of an object

Object Oriented Programming Principles

theAppleInMyPocket

color:green

weight:150g.

price:1€

buy()

sell()

eat()

throw()

properties or
attributes

operations or
methods

A specific object
or

instance

From Object to Class

Objects of the same kind share common attributes and support common
methods : they belong to the same CLASS

Objects of the same class can all have a different state.

An object is said to be an instance of a class.

Object Oriented Programming Principles

anAppleInTheStore

color:red

weight:200g.

price:1.20€

anAppleInMyGarden

color:yellow

weight:80g

price:0.50€

Apple

color

weight

price

buy()

sell()

eat()

throw()

Outline : Session 201

Object Oriented Python

0. A Quick Refresher
1. What is Object Oriented Programming ?
2. Designing Classes & Implementing Methods
3. Using Inheritance
4. Unit Testing Your Code
5. Handling Exceptions
6. Tracing Execution With Loggers
7. Debugging under PyCharm

16

17

Objects in Python

In Python, objects are “just another” type of variable. We already manipulated
some objects in the Python for Beginners sessions :

Object Oriented Programming in Python

import argparse
…
parser=argparse.ArgumentParser(description='Read sequences
from a multi-fasta file')
parser.add_argument('-n','--nucleotides',help='multi-fasta
input file with nucleotide sequence',required=True)

Creates an instance of class ArgumentParser

Variable referring to an
instance of class
ArgumentParser

Method called on an
instance of class
ArgumentParser

import csv
…
reader=csv.DictReader(csvfile,fieldnames=['lastname','firstname','age
'],delimiter='\t'))

Creates an instance of class DictReader

Variable referring to an instance of class DictReader

18

Object Oriented Programming in Python

Writing Classes in Python (I)
Defining the class and how to build instances

class Boat :

def __init__(self):
self.lon=-3.96
self.lat=48.86
self.course=0.0
self.speed=0.0

Class definition keywords

Class name

Built-in name for the constructor method

Argument of the constructor
method, i.e. variable that will
hold the newly build instance

after the function finishes

Initialization of the properties of
this instance

>>> arvorig=Boat()
>>> print((arvorig.lon,arvorig.lat))
(-3.96,48.86)

A function call with a class name
calls the class’ __init__() method

and returns a new instance

19

Object Oriented Programming in Python

Writing Classes in Python (I)
Defining methods

Methods operating on an instance are defined in a class and always receive an
instance as their first argument.

class Boat :
(...)

def setPosition(self,newLon,newLat):
self.lon=newLon
self.lat=newLat

def getPosition(self):
return (self.lon,self.lat)

Variable representing the
Instance used to call the

function.

>>> arvorig.setPosition(-5.34,48.86)
>>> print(arvorig.getPosition())
>>(-5.34,48.86)

20

Writing Classes in Python (I)

Like any other methods, methods defined in a class can
have arguments (and default values).

Object Oriented Programming in Python

class Boat :
def __init__(self,defLon=-3.96,defLat=48.86):

self.lon=defLon
self.lat=defLat
self.course=0.0
self.speed=0.0

>>> arvorig=Boat()
>>> print(arvorig.getPosition())
(-3.96,48.86)
>>> pontaven=Boat(-5.32,31.65)
>>> print(arvorig.getPosition())
(-5.32,31.65)

21

Writing Classes in Python (I)
Methods getting or setting the value of an attribute are called accessors or
getters resp. Setters :

Accessors allow to hide the internal state representation of properties. This is
called ENCAPSULATION.
ENCAPSULATION provides a means to allow the internal state representation to
evolve without impacting programs using objects of a class.

Object Oriented Programming in Python

class Boat :
def setCourse(self,newCourse):

self.course=newCourse
def getCourse(self):

return self.course

class Boat :
def __init__(self,defLon=-3.96,defLat=48.86):

self.latlon=(defLat,defLon)

def getPosition(self):
return (self.latlon)

Object Oriented Programming in Python

Exercise 0

Using PyCharm :

- Create a new project called dmwp

- After downloading and extracting the archive contents with the
training data, copy the data folder in the project folder

- After downloading and extracting the archive contents with the
solutions of the Python for Beginners exercices, copy the src folder in
the project folder.

22

Object Oriented Programming in Python

Exercise 1

- Create a new folder in src called ex201

- Create a new Python file in folder ex201 called sequence.py

- In sequence.py, define a class called Sequence with the following
properties : seqId, letters

- Implement the class constructor method, and the accessors (“getters”
and “setters”) for the each property.

- Create a new Python file in folder ex201 called main.py

- In main.py use the sequence module to create two example
sequences (seqOne and seqTwo), and print the values of their
properties using the “getter” methods.

23

Object Oriented Python

Exercise 2
- Create a new directory src/ex202 and copy the two files from src/ex201
- Enhance ce the sequence module by :

- Creating a SequenceCollection class for managing sequence
collections, and providing the following methods :

- addSequence(self,sequence) : for adding a Sequence instance to
the collection

- removeSequence(self,seqId) : for removing a Sequence instance
from the collection

- getSequence(self,seqId) : returning the Sequence instance having
the identifier seqId

- getAllSequences(self) : returning all the Sequence instances of the
collection (you will need to explicitly use list() for the return value).

- len(self) : returning the number of Sequence instances in the
collection.

- Modify the main.py file to :
- Create an instance of SequenceCollection
- Add the two sequences to the SequenceCollection instance
- Check that the number of sequences in the collection is correct
- Remove one of the two sequences from the collection
- Check the length of the collection again. 24

Outline : Session 201

Object Oriented Python

0. A Quick Refresher
1. What is Object Oriented Programming ?
2. Designing Classes & Implementing Methods
3. Using Inheritance
4. Unit Testing Your Code
5. Handling Exceptions
6. Tracing Execution With Loggers
7. Debugging under PyCharm

25

26

Reusing behaviour across classes using inheritance

In the “real world” there are families of object that expose shared properties
and behaviour :

Object Oriented Programming Principles

Bird

color

weight

age

maxAirSpeed

feed()

reproduce()

fly()

breathe()

Mammal

color

weight

age

feed()

reproduce()

climb()

breathe()

Reptile

color

weight

age

hasVenom

feed()

reproduce()

crawl()

breathe()

Fish

color

weight

age

maxSwimDepth

feed()

reproduce()

swim()

27

Reusing behaviour across classes using inheritance

Transposing this to Object Oriented programming this could lead to code
duplication :

Object Oriented Programming Principles

class Bird:
…

def feed(self,foodWeight):
self.weight=self.weight+foodWeight

class Mammal:
…

def feed(self,foodWeight):
self.weight=self.weight+foodWeight

class Reptile:
…

def feed(self,foodWeight):
self.weight=self.weight+foodWeight

Duplicating code is
evil !

28

Reusing behaviour across classes using inheritance
Inheritance provides a way to group properties shared between a set of classes
in a “parent class”, and to derive or to “specialize” child classes. Child classes
will benefit of all the properties of their parent class :

Object Oriented Programming Principles

Bird

maxAirSpeed

fly()

breathe()

Mammal

climb()

breathe()

Reptile

hasVenom

crawl()

breathe()

Fish

maxSwimDepth

swim()

Animal

color

weight

age

feed()

reproduce()

Is
a kin

d of

Is a kind of

29

Reusing behaviour across classes using inheritance

Python allows classes to inherit from other classes :

Object Oriented Programming Principles

class Bird(Animal):
…

class Mammal(Animal):
…

class Reptile(Animal):
…

class Animal:
…

def feed(self,foodWeight):
self.weight=self.weight+foodWeight

Base class

Derived classes

30

Reusing behaviour across classes using inheritance

Multiple levels of inheritance can be defined

Object Oriented Programming Principles

Bird

maxAirSpeed

fly()

Mammal

climb()

Reptile

hasVenom

crawl()

Fish

maxSwimDepth

swim()

Animal

color

weight

age

feed()

reproduce()

BreathingAnimal

breathe()

31

Reusing behaviour across classes using inheritance

An example of a three level inheritance tree :

Object Oriented Programming Principles

class Bird(BreathingAnimal):
…

class Mammal(BreathingAnimal):
…

class Reptile(BreathingAnimal):
…

class Animal:
…

def feed(self,foodWeight):
self.weight=self.weight+foodWeight

class BreathingAnimal(Animal):
…

def breathe(self,volIn,volOut):
...

32

Reusing behaviour across classes using inheritance

Inheritance and object construction : constructor methods in derived classes
may need to call constructor methods in base classes to initialize common
properties. This is done through the super() method.

Object Oriented Programming Principles

class Reptile(BreathingAnimal):
def __init__(self,weight,age):

super().__init__(weight,age)

class Animal:
def __init__(self,weight,age):

self.weight=weight
self.age=age

class BreathingAnimal(Animal):
def __init__(self,weight,age):

super().__init__(weight,age)

calls

calls

33

Reusing behaviour across classes using inheritance

A derived class can OVERRIDE or REDEFINE its base class behaviour by
redefining one or more of its methods :

Object Oriented Programming Principles

class Mammal(BreathingAnimal):
...

def feed(self,foodWeight):
Mammals are famous for their sloppy eating
self.weight=self.weight+foodWeight*0.6

class Animal:
…

def feed(self,foodWeight):
self.weight=self.weight+foodWeight

class BreathingAnimal(Animal):
...

feed() is redefined

Animal.feed() will not be called
anymore for Mammal instances.

34

Reusing behaviour across classes using inheritance

When overriding an inherited method, the super() method can also be used.

Object Oriented Programming Principles

class Mammal(BreathingAnimal):
...

def feed(self,foodWeight):
Mammals are famous for their sloppy eating
foodWeight=foodWeight*0.6
super().feed(foodWeight)

class Animal:
…

def feed(self,foodWeight):
self.weight=self.weight+foodWeight

class BreathingAnimal(Animal):
...
no feed method is defined in this class

calls

And last but not least :

Co-location of data (attributes) and algorithms that modify
them (methods)

Until now, we had functions on the one hand, and data structures on the other
hand. When calling a function, we were forced to add one or more arguments
that the functions operated on.

With object oriented programming, methods are always applied to an object,
and thus have access to the complete internal representation of the object. No
need for arguments (except for data not part of the object whose method is
called).

Object Oriented Programming Principles

Object Oriented Python

Exercise 3
- Create a new directory src/203 and copy the files from src/202
- Write a cyanosequence module using the sequence module and defining :

- A CyanoSequence class deriving from the Sequence class and adding
a strain attribute with its accessors (getStrain() and setStrain()).

- A CyanoSequenceCollection class deriving from the
SequenceCollectionClass with a new method :

- getSequencesInStrain(self,strain) : returning the list of Sequence
instances belonging to the given strain.

- getAllStrainNames(self) : returning the list of strains of all the
sequences in the collection

- Modify the main.py program to :
- Create three instances of CyanoSequence
- Use the setStrain() accessor with arbitrary strain names (use the same

strain name for two of the three instances).
- Create an instance of CyanoSequenceCollection
- Add all the instances to the collection.
- Check the result of getAllStrainNames()
- Check the result of getSequencesInStrain()

36

Object Oriented Python

Exercise 4 (Advanced)

- Create a new directory src/204 and copy the files from src/203
- Enhance the CyanoSequenceCollection class by adding

readFromFastaFile(self,filename) method which :
- Uses the readFastaSequencesFromFile() function from the

sequencetools module (in the lib directory)
- Builds an instance of CyanoSequence for each sequence read in the

file, extracting the strain from the sequence ID with a regular
expression :

>CK_Pro_MED4_1241:1193591-1194439:1|PMM1241

- Adds each of these instances to the collection instance.

- Modify main.py to :
- Read sequences from the cyanorak_complete.fna file in the

data/fasta directory.
- Display the number of sequences for each strain in descending order.

37

Outline : Session 201

Object Oriented Python

0. A Quick Refresher
1. What is Object Oriented Programming ?
2. Designing Classes & Implementing Methods
3. Using Inheritance
4. Unit Testing Your Code
5. Handling Exceptions
6. Tracing Execution With Loggers
7. Debugging under PyCharm

38

Acting before things go wrong!
A main concern, when developing scripts and modules is to ascertain that the
code actually actually what is expected to do, without side effects.

We need a means to check that every single function runs as intended by :
1. Before calling the function, “setting up” the environment it needs (initialize

variables, create objects, open files…)
2. Calling the function in isolation from the others.
3. After the function has finished, checking that it has done its job properly.
4. Cleaning up the environment that was set up for the test.

Decent programming languages provide adequate tools to build these
UNIT TESTS and automate their execution.

Unit Testing your Code

class SequenceCollection:

def addSequence(self,sequence):
seqId=sequence.getSeqId()
self.sequences[seqId]=sequence

Uh, oh ! What happens if there already was a
sequence with the same seqId ?

40

Unit Testing your Code

How could we Unit Test method:

CyanoSequenceCollection.readFastaSequenceFromFile(...)

1. Setting-up the environment:
- Preparing a file with test sequence data whose contents are known.
- Creating in instance of CyanoSequenceCollection to be used for calling the function.

2. Calling the function in isolation from others:
- Use the previously created instance only for calling the function to test.
- Specify as filename the sequence data file we prepared for the test.

3. Checking that the function has done its job properly:
- Checking the number of sequences in the sequence collection: it has to match the

number of sequences in the test file.
- Checking the names of the strains: all the strains present in the test file must be

present
…

4. Cleaning-up the environment means:
- Nothing specific in this case: no files were left unclosed, no network or database

connections have been used.

41

Unit Testing your Code

Unit Testing in Python is heavily object oriented : it relies on a TestCase class
in the unittest module.

To build or own unit tests we shall :

1. Create a test class derived from unittest.TestCase :

Through inheritance, our test class will benefit from all the features of the
unittest.TestCase class:

- Methods to set-up and tear down (clean) the environment before and after
each test function call.

- Methods to check that the function’s outcome matches our expectations.
- Tight integration with our development environment to run tests and

display their results.

import unittest

class SequenceCollectionTest(unittest.TestCase):
...

Our very own test class The parent class of our test class

42

Unit Testing your Code

To build or own unit tests we shall :

2. Override a method to set up the test environment.

This method will be called just before each single test method is called. If our
test class contains three test methods, there will be three calls to the setUp()
method.

In this case, a new instance of CyanoSequenceCollection will be created and
used in a single test function.

import unittest
import cyanosequence

class SequenceCollectionTest(unittest.TestCase):
…

def setUp(self):
self.seqCollection=cyanosequence.CyanoSequenceCollection()

We initialize a new attribute of our class with a new instance
of the class having the functions/methods we want to test.

setUp() is defined in unittest.TestCase. We specialize it
to fit our needs.

43

Unit Testing your Code

To build or own unit tests we shall :

3.Write a test method that calls the method to test

By default, all methods starting with test will be considered test methods and
run by the testing framework (PyCharm in our case).

import unittest
import cyanosequence

class SequenceCollectionTest(unittest.TestCase):
…

def testReadFastaSequencesFromFile(self):
self.seqCollection.readFastaSequencesFromFile('test.faa')

We use the instance created
during setup to call the
method to test.

Notice that the method name starts with test.

The method to test will use a well-known test
data file.

44

Unit Testing your Code

To build or own unit tests we shall :

4. Add assertions to our test method to verify the results of the method under
test

Assertions are used to compare a value computed in the test function to an
expected value and yield a boolean result. The test framework considers that a
given test (method) fails if one of the assertions it contains returns False.

import unittest
import cyanosequence

class SequenceCollectionTest(unittest.TestCase):
…

def testReadFastaSequencesFromFile(self):
self.seqCollection.readFastaSequencesFromFile('test.faa')
totalSequences=self.seqCollection.len()
self.assertEqual(totalSequences,42)

The expected value : we know
exactly how many sequences there

are in our test data. So we can check
if all have indeed been read.

One of the many assertion methods
provided by unittest.TestCase

45

Unit Testing your Code

To build or own unit tests we shall :

5. Clean up the test environment

The tearDown() method is provided to clean up all resources that might have
been allocated for the test function and not yet released. It might not be
necessary to override tearDown().

import unittest
import cyanosequence

class SequenceCollectionTest(unittest.TestCase):
…

def tearDown(self):
Nothing to do here, no resources are left
in a pending state.
pass The pass keyword allows to define

“do nothing” code blocks.

tearDown() can be overridden to
clean up the test environment.

46

Unit Testing your Code

A warning regarding the outcomes of unit tests :
A FAILED test is different from a test with an ERROR

- A FAILED test is a test where the actual outcome is different from the
expected outcome :

- A test with an ERROR is a test whose execution has gone wrong and did
not proceed until the end :

Assertions are used to compare a value computed in the test function to an
expected value and yield a boolean result. The test framework considers that a
given test (method) fails if one of the assertions it contains returns False.

def testReadFastaSequencesFromFile(self):
self.seqCollection.readFastaSequencesFromFile('test.faa')
totalSequences=self.seqCollection.len()
self.assertEqual(totalSequences,42)

def testReadFastaSequencesFromFile(self):
self.seqCollection.readFastaSequencesFromFile('bogus.faa')
totalSequences=self.seqCollection.len()
self.assertEqual(totalSequences,42)

This test will FAIL if
totalSequences is not 42

This test will produce an ERROR because of a non existing data file.

The Unit Test mantra goes as follows: there MUST be at least one test method
for each implemented method.

Hence, as the codebase of useful functions grows, so does the code base of
unit tests. Luckily, software development environments provide tools to
automate the execution of the complete set of unit tests of a module or even a
project.

Writing comprehensive unit tests has two more benefits :
1. Each test shows how a function can be used and is a way of documenting

the code.

2. Regularly running unit test suites ensures that a modification in one area of
the code doesn’t break other areas (or else tests will pinpoint these
locations).

As a matter of fact, a number of open source projects require that contributors
write unit tests when they want their code to be integrated in the project. These
projects provide procedures automatically running unit tests and checking their
outcome before code gets integrated.

Unit Testing your Code

The actual tests can be run by (cleanly) adding a call to the unittest.main()
method at the end of the file with the test case:

When running this script from the command-line, the output is:

PyCharm has all the built-in functionalities to recognize and run unit tests.

Unit Testing your Code

import cyanosequence
import unittest

class SequenceCollectionTest(unittest.TestCase):

...

if __name__=='__main__':
unittest.main()

(myvenv)[foobar] python cyanosequencetest.py
Ran 1 test in 0.001s
OK
(myvenv)[foobar]

Unit Tests

Exercise 205

- Copy the contents of directory src/ex204 in directory src/ex205

- Write a unit Test Case, testcyanosequence.py, testing the following
methods available on the CyanoStrainCollection class :
- getAllStrainNames(): check that the number of strains is as

expected (14)
- getSequencesInStrain(): check that the number of sequences for

strain RCC307 is as expected.

- Run the tests using ../../data/fasta/cyanorak_complete.faa to
build the initial data structure.

49

Outline : Session 201

Object Oriented Python

0. A Quick Refresher
1. What is Object Oriented Programming ?
2. Designing Classes & Implementing Methods
3. Using Inheritance
4. Unit Testing Your Code
5. Handling Exceptions
6. Tracing Execution With Loggers
7. Debugging under PyCharm

50

When writing a program, we try to predict how things may go wrong, and how to
cope with such situations :

- Before using a dictionary key, we check if it exists.

- Before accessing an element in a list, we check if the index is valid.

- Before trying to extract a pattern from a string, we check if the pattern is
present.

All these precautions are based on the assumption that we can anticipate faulty
situations and prevent them from happening.

But what about unforeseen events ?

- A data file given as argument may not be readable by our program

- A data column supposed to contain numbers may contain strings

- When retrieving data remotely, the network connection may fail

Handling Exceptions

In Python, unforeseen events raise Exceptions
For ex. : When trying to read a non-existent file
1. Somewhere in main.py

2. When trying to run main.py

Program execution is brutally interrupted

Handling Exceptions

...
seqCollection.readFastaSequencesFromFile('../../data/fasta/cyanorak
_complete.fab')
... I made a typo in the filename. This file doesn’t exist.

Traceback (most recent call last):
 File "C:/Users/Mark/PycharmProjects/dmwp/src/ex205/main.py", line 4, in <module>
 seqCollection.readFastaSequencesFromFile('../../data/fasta/cyanorak_complete.fab')
 File "C:\Users\Mark\PycharmProjects\dmwp\src\ex205\cyanosequence.py", line 37, in
readFastaSequencesFromFile

allSequences=sequencetools.readFastaSequencesFromFile(filename,sequenceType=sequencetools.
RESIDUES_TYPE)
 File "C:\Users\Mark\PycharmProjects\dmwp\lib\sequencetools.py", line 43, in
readFastaSequencesFromFile
 with open(filename) as infile :
FileNotFoundError: [Errno 2] No such file or directory:
'../../data/fasta/cyanorak_complete.fab'

Th
e

ex
ce

pt
io

n
st

ac
k

The actual cause of the
exception being raised

Python provides a mechanism to intercept and process Exceptions
The try / except instruction blocks

- The try keyword is followed by an instruction block

- If an exception occurs in this instruction block, execution of the program
“jumps” to the start of the except block instead of interrupting the
program.

- The except block can process the exception, and execution then continues
after the except block.

Handling Exceptions

try :
seqCollection.readFastaSequencesFromFile('wrongfile.data')

except :
print('There was an error accessing the file')

Selecting which exceptions to process

Oftentimes, we can only handle certain types of exceptions: missing dictionary
keys, list indexes exceeding the list size, file opening/reading errors.

Other exceptions are mostly beyond our control : insufficient memory to carry
out computations, no more disk space to write results

The except keyword can be followed by the type of exception to intercept :

Exceptions of a different type occurring in the try block will not be processed
in the except block.

Handling Exceptions

try :
res=res+myList[tooLargeIndex]

except IndexError :
print('Your index exceeds the size of the list!')

We shall only handle oversized index
exceptions.

Some useful exception types

The complete list of built-in exceptions can be found at:

https://docs.python.org/fr/3.5/library/exceptions.html#TypeError

Handling Exceptions

IndexError A wrong value was used as list/tuple index

KeyError A wrong (non-existent) value was used as key in a dictionary

ZeroDivisionError Zero was found as denominator in a division operation

TypeError The argument of a function or an operator is of a wrong type

FileNotFoundError The file to which access was tempted doesn’t exist

PermissionError The user/program has insufficient permissions to access the file

https://docs.python.org/fr/3.5/library/exceptions.html#TypeError

Defining and raising your own exceptions

Basically, exceptions are ordinary Python classes. Nothing prevents us from
deriving new Exception classes using Exception (or one of its subclasses)
as parent class.

We can then raise these exceptions when needed using the raise keyword :

Handling Exceptions

class FastaFormatException(Exception):
def __init__(self,message=''):

self.message=message

class CyanoSequenceCollection(SequenceCollection):
def __checkFastaFormat(self,filename):

line=''
with open(filename) as fastafile :

line=fastafile.readLine()
if line[0] != '>' :

raise FastaFormatException('line[:-1] is not a Fasta ID')

An explicit message can be provided.

The raise keyword A new instance is created

Defining and raising your own exceptions

Custom exceptions can then be processed as any other exception :

Handling Exceptions

class CyanoSequenceCollection(SequenceCollection):

def readFastaSequencesFromFile(self,filename):
try :
 __checkFastaFormat(filename)

...
The rest of the code of this method doesn’t change.
...

except FastaFormatException as ffe:
print(ffe.message)

The instance is stored in the ffe
variable.

Defining and raising your own exceptions

Custom exceptions can then be processed as any other exception :

Handling Exceptions

class CyanoSequenceCollection(SequenceCollection):

def readFastaSequencesFromFile(self,filename):
try :
 __checkFastaFormat(filename)

...
The rest of the code of this method doesn’t change.
...

except FastaFormatException as ffe:
print(ffe.message)

The instance is stored in the ffe
variable.

Differential exception handling and the finally block

- A single try block may raise different exceptions which can be handled
separately.

- Using the finally keyword, it is possible to define an instruction block
that will be executed whether or not (an) exception(s) occurred in the try
block.

Handling Exceptions

class CyanoSequenceCollection(SequenceCollection):

def readFastaSequencesFromFile(self,filename):
try :
...
except FastaFormatException as ffe:

print(ffe.message)
except FileNotFoundException:

print('There was an error accessing the file')
finally :

make sure that our sequence collection is consistent

Executed whatever

happened in the try block

Unit Tests

Exercise 206

- Copy the contents of directory src/ex205 in directory src/ex206

- Handle the case where a sequence ID does not contain a strain identifier :
- Create a new Exception class : MissingStrainException

- Modify the CyanoSequenceCollection.readFastaSequencesFromFile
method to raise the MissingStrainException when the pattern looking for
the strain doesn’t match.

- If time allows, enhance your Unit Tests :
- Add a test verifying that the exception is indeed raised, using the

assertRaises() assertion method :
https://docs.python.org/3/library/unittest.html

- Check the results using:
../../data/fasta/cyanorak_complete_bogus.faa

60

https://docs.python.org/3/library/unittest.html

Outline : Session 201

Object Oriented Python

0. A Quick Refresher
1. What is Object Oriented Programming ?
2. Designing Classes & Implementing Methods
3. Using Inheritance
4. Unit Testing Your Code
5. Handling Exceptions
6. Tracing Execution With Loggers
7. Debugging under PyCharm

61

The limits of output generated through print()

We abundantly used the print() function to generate output from our modules
and scripts. This method has several drawbacks :

- When output is really verbose, the screen scrolls and output can even be
lost if the scroll memory is too small.

- All kinds of output are mixed: results destined to the user as well as
progress or debug messages destined to the developer.

We need a mechanism:

- Ensuring we can easily collect all the output of our programs and scripts.

- Allowing us to select an appropriate channel depending on the nature of the
information we want to communicate.

Tracing execution with loggers

Basic principles of the logging module

- Output is managed by instances of the Logger class : forget about
print()

- We can create as many different Loggers as needed to generate output,
each dedicated to a single module / class / method (our choice).

- Each Logger can be configured to use different output mechanisms: the
terminal, a log file, emails, database records

- Loggers handle messages with different priority levels and can be
configured with a threshold to filter out low-priority messages (remember
the -v (--verbose) or -d (--debug) options) :

DEBUG < INFO < WARNING < ERROR < CRITICAL

Tracing execution with loggers

Basic usage of Loggers

The most basic way to benefit of logging is to :
- Import the module
- Set the desired logging level
- Call the methods that match the different priority levels to generate

messages

Will display on the terminal (or the console) :

Tracing execution with loggers

import logging

logging.basicConfig(level=logging.DEBUG)

if __name__ == '__main__' :
logging.debug("This is a debug message.")

(myvenv)[foobar] python loggingdemo.py
 DEBUG:root:This is a debug message.
(myvenv)[foobar]

The level of the message.

The name of the logger.

The log message

The default logging level is
WARNING. Set the level to DEBUG

Generates a message of
level DEBUG

Working with differentiated Loggers

It is however recommended to create module specific loggers. This is done with
the logging.getLogger()function. This function takes as argument an
arbitrary string which will be the name of the logger. If no logger with the same
name exists, a new instance is created and returned. Otherwise, the already
existing one is returned.

Tracing execution with loggers

import logging
if __name__ == '__main__' :

loggerOne=logging.getLogger("LoggerOne")

loggerTwo=logging.getLogger("LoggerTwo")

loggerOneAlias=logging.getLogger("LoggerOne")

Creation of a logger with
name “LoggerOne”

Creation of a logger with
name “LoggerTwo”

The previously created
“LoggerOne” is returned

Logger configuration

Loggers are highly configurable objects, the main areas of configuration are:

1. The channel to which log messages are sent : standard output (terminal),
log file, e-mail, database record...

2. The format of the log messages : date/time, module / class / method
information, level of the message, message details

3. The level at which messages are handled by each channel : all messages
below the threshold level are simply ignored.

Inside a module, it is standard practice to define a logger as:

Tracing execution with loggers

Configuring log handlers

Log message output channels are called handlers. Once created, they can be
added to any given logger using the addHandler() method. Thus, a single
logger can have multiple handlers, and each handler can have its own level.

A StreamHandler can be used to channel log messages to the terminal.
A FileHandler can be used to channel log messages to… a file(!).

Tracing execution with loggers

import logging
(…)
myModuleLogger=logging.getLogger(__name__)
myModuleVerboseHandler=logging.StreamHandler()
myModuleVerboseHandler.setLevel(logging.DEBUG)
myModuleLogger.addHandler(myModuleVerboseHandler)
myModuleTerseHandler=logging.FileHandler('/tmp/python.log')
myModuleTerseHandler.setLevel(logging.WARNING)
myModuleLogger.addHandler(myModuleTerseHandler)
(…)
myModuleLogger.debug('Some unimportant detail')
myModuleLogger.warning('Something went bad.')

Generated on screen and in the

logfile

Create two handlers

and attach them to the

same logger.

Generated on screen only

Formatting log messages

The actual format of the log messages is managed by Formatters. Formatter
constructors take a single argument: a string describing how to format the log messages,
which may contain “variable-like” fields which will be replaced dynamically.

Tracing execution with loggers

%(msg)s The message transmitted by the call to the logger

%(asctime)s A human-readable representation of the date/time of the log message generation

%(name)s The name of the logger used to send the message

%(lineno)d The line number on which the call to to the logger was made

%(levelname)s The string representation of the level of the message

%(funcName)s The function in which the call to the logger was made

%(filename)s The file name in which the call to the logger was made

myModuleLogger=logging.getLogger(__name__)
myModuleStreamHandler=logging.StreamHandler()
myModuleLogger.addHandler(myModuleStreamHandler)
myModuleStreamFormatter=logging.Formatter("%(asctime)s-%(name)s-%(msg)s")
myModuleStreamHandler.setFormatter(myModuleStreamFormatter)

Defines a specific format of log messages
for this handler

Setting the log level

Log message filtering according to the log level happens in two locations:

1. Inside the logger instance itself

2. Inside every handler

In order for a message to be generated, its level must be at least the one defined
for the logger. Only then will the message be passed to each handler which, in
turn, proceed to the actual generation or decide to ignore it (depending on their
level configuration).

As a rule of thumb :

Set the log level both in the logger(s) and in the handler(s)

Tracing execution with loggers

Logger configuration “inheritance”

Logger configurations are “inherited” between loggers based on their names: a
logger called sampleModule wil be considered a parent logger for a logger
called sampleModule.SampleClass.

If no extra configuration is performed on the sampleModule.SampleClass
logger, it will behave exactly as the sampleModule logger.

This allows for very simple and powerful logging strategies: one logger at the
module scope, another logger at the class scope, and another at the method
scope. All sharing the same characteristics but customizable at will.

There is always a logger at the root of the logger hierarchy named “root”

Tracing execution with loggers

Tracing execution with loggers

Exercise 7

- Copy the contents of directory src/ex206 into directory src/ex207
- Add loggers to the cyanosequence.py method:

- generating a debug() message each time getAllStrainNames() is
called.

- generating a warning()message each time the strain is missing from
the sequence identifier.

- Add loggers to the unit test methods:
- generating an info() message at the beginning of each test method

call.
- Configure the loggers to :

- Send all cyanosequence.py log messages to the terminal.
- Send all unit test log messages to a log file with the date/time

information.

- Run the tests using ../../data/fasta/cyanorak_complete.fna

71

Outline : Session 201

Object Oriented Python

0. A Quick Refresher
1. What is Object Oriented Programming ?
2. Designing Classes & Implementing Methods
3. Using Inheritance
4. Unit Testing Your Code
5. Handling Exceptions
6. Tracing Execution With Loggers
7. Debugging under PyCharm

72

We already learned about three techniques enhancing confidence we may have
in our code :

- Logging : we can follow (to a certain extent) what’s going on in our code.

- Exceptions : we can try to intercept and handle events that otherwise cause
our program to crash

- Unit testing : we can assess that our code does what it says it does

However, our code can still expose some unexplained behaviour : program
crashes, missing or inconsistent results.

We need tools enabling us to debug our code, a.k.a, interactively inspect our
programs while they are running

A final word on debugging

Main features of a decent debugger

1. Provide a way to stop a program on a specific line of code, before executing
the latter.

2. Enable dynamic inspection of data structures (variables, objects…)

3. Allow to proceed to a step-by-step execution :
a. By running one line of code at a time

b. By entering into functions/methods at the location where they are
called.

c. By skipping over functions/methods we don’t want to inspect

The PyCharm development environment provides all this features

A final word on debugging

