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Wednesday — RNASeq assembly
e |ntroduction

— Transcriptome definitions and

variabilit * De novo assembly TP
y
— RNAseq vs Micro-array ® Reference assembly TP 1

— How deep is enough
— Library construction bias
— Sequencing terminology

e Data cleaning Thursday
e RNAseq analysis e Expression analysis

— Assembly algorithm * Transcrlptome
annotation




Introduction

TRANSCRIPTOME DEFINITIONS AND
VARIABILITY
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Transcription

Definition :
Transcription is the process of creating a complementary RNA copy of a sequence
of DNA. Transcription is the first step leading to gene expression.

Transcription product
Protein coding gene: transcribed in mRNA

ncRNA : highly abundant and functionally important RNA (up 95%)
e tRNA,

e rRNA,
e Regulatory RNA
* snoRNAs (rRNA maturation)
* microRNAs (post-transcriptional regulators)
* sSiRNAs (mRNA degradation)
* piRNAs (block the activity of the mobile elements)

* LincRNA (regulators of diverse cellular processes)
e VIincRNA...



4 ') Station Biologique
m® Roscoff

The GENCODE Project:

Encyclopzedia of genes and gene variants

Version 19 (July 2013 freeze, GRCh37) - Ensembl 74

General stats

Total No of Genes
Protein-coding genes
Long non-coding RNA genes
Small non-coding RNA genes
Pseudogenes

- processed pseudogenes:

- unprocessed pseudogenes:

- unitary pseudogenes:

- polymorphic pseudogenes:

- pseudogenes:

Immunoglobulin/T-cell receptor
gene segments

- protein coding segments:

- pseudogenes:

57820
20345
13870
9013
14206
10532
2942
161
45
296

386
230

Total No of Transcripts
Protein-coding transcripts

- full length protein-coding:

- partial length protein-coding:

Nonsense mediated decay
transcripts

Long non-coding RNA loci
transcripts

Total No of distinct translations

Genes that have more than one
distinct translations

196520
81814
57005
24809
13052

23898

61559
13600
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GENCODE statistics
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GENCODE statistics
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Sources of variability

Biological elements which tend to blur the signal
— Repeats
— Gene families
— Pseudogenes
— Alternative splicing
— Intron retention
— (Cis-)natural anti-sens transcript
— Fusion genes

Elements removing or masking the signal
— Transcript decay
— Sequencing protocol biases
— Sequencing depth

Other elements :

— PolyAtails
— Adapters
— Contamination
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« In humans, for example, there is evidence for
alternative splicing of more than 95% of genes
[1], with an average of more than five isoforms
per gene.

Somewhat surprisingly, alternatively spliced
isoforms from a single gene can also have very
different, even antagonistic, functions [2] »

[1] Pan et al. (2008) Deep surveying of alternative splicing complexity in the
human transcriptome by high-throughput sequencing. Nature Genetics 40:
1413-1415.

[2] Boise et al. (1993) Bcl-x, a bcl-2-related gene that functions as a
dominant regulator of apoptotic cell death. Cell 74: 597-608.
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Salzman, J. et al. (2012). Circular RNAs Are the Predominant Transcript Isoform from Hundreds of Human Genes in Diverse Cell Types PLoS ONE, 7 (2)

DOI: 10.1371/journal.pone.0030733

Hoffmann, S., Otto, C., Doose, G., Tanzer, A., Langenberger, D., Christ, S., et al. (2014). A multi-split mapping algorithm for circular RNA, splicing,
trans-splicing and fusion detection. Genome Biology, 15(2), R34.
Jeck, W. R,, Sorrentino, J. A., Wang, K., Slevin, M. K., Burd, C. E., Liu, J., et al. (2013). Circular RNAs are abundant, conserved, and associated with ALU

repeats. RNA 19: 141-157.

Nitsche, A., Doose, G., Tafer, H., Robinson, M., Saha, N. R., Gerdol, M., et al. (2013). Atypical RNAs in the coelacanth transcriptome. Journal of
Experimental Zoology. Part B, Molecular and Developmental Evolution.
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Natural anti-sense transcripts (NATs) are a group of RNAs encoded within a cell that
have transcript complementarity to other RNA transcripts.

1. Head to Head: 5’ to 9’ overlap 4. Nearby Tail to Tail

5. Nearby Head to Head
. I -
3 | : o'

Fig. 1: The five orientations for overlap of cis-
NAT pairs. Genes are always transcribed 5’ to
' 3. Regions of overlapping strands are shown
with dotted lines.

http://en.wikipedia.org/wiki/Cis-natural_antisense_transcript



@ Station Biologique
m® Roscoff

Fusion gene

A fusion gene is a hybrid gene formed from two previously separate genes. It can
occur as the result of a translocation, interstitial deletion, or chromosomal
inversion. Often, fusion genes are oncogenes.

They often come from trans-splicing : Trans-splicing is a special form of RNA
processing in eukaryotes where exons from two different primary RNA transcripts
are joined end to end and ligated.
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Distinguishing gene fusions from noise in RNA-Seq data is extremely difficult :

Panagopoulos |, Thorsen J, Gorunova L, Micci F, Heim S. (2014) Sequential combination of karyotyping and RNA-
sequencing in the search for cancer-specific fusion genes. Int J Biochem Cell Biol.
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Transcript decay

A

After export to the cytoplasm, mRNA is protected from degradation by a 5’ cap
structure and a 3’ poly adenine tail.

In the deadenylation dependent mRNA decay pathway, the polyA tail is gradually
shortened by exonucleases. This ultimately attracts the degradation machinery that
rapidly degrades the mRNA in both in the 5’ to 3’ direction and in the 3’ to 5’ direction.

Deadenylation medinted mRNA dacay
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Monsense mediated mBMNA dacay ARE mediated MA dacay
MM complex
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http://www.eb.tuebingen.mpg.de/research/research-groups/remco-sprangers/mrna-degradation.html
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RNASEQ ANALYSIS
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How RNA-seq works

Methodology:

— RNA is isolated from cells,

— Fragmented at random positions,

— Copied into complementary DNA,

— Selection of fragments with a certain
Size range,

— Amplification using PCR,

— Sequencing, Next generation sequencing (NGS)

‘ Sample preparation

— Reads are aligned to a reference

genome or de novo assembled, l Data analysis
— The number of sequencing reads

mapped to each gene in the reference is

tabulated.

Figure from Wang et. al, RNA-Seq: a revolutionary tool for transcriptomics, Nat. Rev. Genetics 10, 57-63, 2009.
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x = . Figure from Wang et. al, RNA-Seq: a revolutionary
Biphk tool for transcriptomics, Nat. Rev. Genetics 10, 57-63,

2009).

Nature Reviews | Genetics
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A Paradigm for Genomic Research

WGS Sequencing
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A Paradigm for Genomic Research
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A Maturing Paradigm for Transcriptome Research

WGS Sequencing RNA-Seq

Assemble
i' Align

Assemble
Draft Genome Scaffolds

Transcripts
Methylation %
Tx-factor

binding sites SNPs Proteins Expression



@ Station Biologique
o Roscoff

WGS Sequencing RNA-Seq
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WGS Sequencing RNA-Seq
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WGS Sequencing RNA-Seq
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MRNA-Seq Technology Applications (1)
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Differential gene expression analysis
— Healthy vs. Diseased
— Time course experiments
— Different genotypes

Transcriptional profiling
— Tissue-specific expression

Novel gene identification
— Transcriptome assembly



A | MRNA-Seq Technology Applications (2)
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Identification of splice variants :
— analysis of exon borders,

— patterns of alternative splicing and the study of
protein isoforms.

SNP finding
RNA editing

Discovery of "small" RNA ("small RNAs" snRNA,
snoRNA, siRNA, miRNA, piRNA ("Piwi-interacting
RNAs"), ...) of small size (20-30 nucleotides) and
prediction of their secondary structures
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The evolution of transcriptomics

1995 P. Brown, et. al.

Gene expression profiling
using spotted cDNA
microarray: expression levels
of known genes

1

2002 Affymetrix, whole
genome expression profiling
using tiling array: identifying
and profiling novel genes and
splicing variants

2008 many groups, mRNA-seq:
direct sequencing of mRNAs
using next generation
sequencing techniques (NGS)

RNA-seq is still a technology

under active development
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;' ne | RNAseq vs microarray

e Microarrays always have a fixed number of
fluorescent probes and therefore have a
constant amount of data per run (probe can
saturate or fall to background level, however)

e RNA seq : Digital data in the form of aligned
read-counts but the total amount of sequence

can vary significantly both between runs and
between genes within a given run
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e RNAseq sensitivity 10 to 100 order of magnitude
higher than microarrays. it allows a very wide
dynamic range : detection of rare transcripts

e RNAseq allows de novo gene expression analysis
e Good correlation RNAseq vs. Micro-array

Log-Log Correlation
Sequencing/Exon Array
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RNAseq vs microarray
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RNA-seq and microarray agree fairly well only for genes with medium
levels of expression

Low Medium High
6 5= S =
Correlation = 0.099 Correlation = 0.509 o Correlation = 0177
>, oV e sl ~k \‘ f~
B 54 ~ g 0. WO g‘j‘?-"‘. 5 @
£ ] J v L) 4 AR CADONRD T A
ol > &
[~
‘_'__-.' 43 g "
E { x'__ 3 it ) (4 %)
{ 34 J“ Q )
£ 2 R P~ © g0
c 7y
2 24 0 o2 x3¥ 0% s R
g - 148 o0 ‘f\" 1"*‘_ o
L: 1 : U: Oy ¢ ‘a ‘/( )
0+ 0 ——o— : ‘
] 0 8 10 12 4

Expression levels by RNA-Seq (log2)

Nature Reviews | Genetics

Saccharomyces cerevisiae cells grown in nutrient-rich media. Correlation is
very low for genes with either low or high expression levels.
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e RNAseq cost decrease

For example, using Rapid Run mode on
the HiSeq 2500, one can run as many as
24 samples at 25 million* paired-end 75
basepair reads ) (50 million total reads)
per sample in less than 24 hours and in a
single run.

(75 bp in 16h and 150 bp in 40h).

Sl met el el e me e e e = ]
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

(*)Depth and format at which published
studies have reported the detection of
novel features such as gene fusions and
alternative transcripts
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Transcriptomics methods

Advantages of RNA-Seq compared with other transcriptomics methods

Technology Tiling microarray cDNA or EST sequencing} RNA-Seq
Technology specifications

Principle Hybridization Sanger sequencing High-throughput sequencing
Resolution From several to 100 bp Single base Single base
Throughput High Low High
Reliance on genomic sequence Yes No In some cases
Background noise High Low Low
Application

Simultaneously map transcribed regions and gene expression  Yes Limited for gene expressionfl Yes

Dynamic range to quantify gene expression level Up to a few-hundredfold Not practical >8,000-fold
Ability to distinguish different isoforms Limited Yes Yes

Ability to distinguish allelic expression Limited Yes Yes

Practical issues

Required amount of RNA High High Low

Cost for mapping transcriptomes of large genomes High High Relatively low
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Search terms -

x I rna-seq

x I microarrays

x I transcriptome]

4+ Add term

» Other comparisons

Average 2005 2007 2009 2011
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RNA-Seq is Hot!

60
M In-House
50
M Qutsource
40
Bio 2012 Survey n=708
30
S C S —
; A
20 AMPLICON SEQUENONG PLT SR
TARGETED RESEQUENONG RIOE AN
SMALL RNA ANALYSIS EE S
OTHER

Exhibit 5.29. Organization’s Next-Gen Sequencing Activities to Date

Number of Percent of

Application Responses Respondents
Whole genome de novo 28 60.9%
sequencing
Exome sequencing 19 41.3%
mwmg -] TS
[ RNA-seq 25 54.3%
‘\ej ChiP-seq 10 21.7%
o Methyl-seq 8 174%
GWAS 7 15.2%
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A The evolution of transcriptomics

“Analyte Classes” Studied via NGS Today: Provides a

Picture of Research Efforts by Type of Nucleic Acid

Studying Small RNAs,
microRNAs, or microRNA
biology per s=

15%

Studying Somatic

o Studying Small
Mutations [in the genome] RNAsmicroRNAs in Cancer
38% 3%

Studying the

Genome via Studying Long Non-coding

RNAs
NGS 6%
Studying mRNA Expression
via RNA-Seq
33% RNA-Seq

GENengnews.com GENReports: Market & Tech Analysis, Produced by Enal Razvi, Ph.D. © 2014
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Introduction

EXPERIMENT DESIGN
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What is RNAseq experiment design ?
e Answer to a clear biological question

e Take in account the indentified variation factor, the material
and money constrains

e Plan the bioinformatic and biostatistics analysis

e Follow the R. A. Fisher (1935) principles adapted to RNA-seq :

* Repeats * Biological repetitions
« Shuffeling repartion * Sequencing depth
* Bloc constitution * Multiplexing
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Experiment design

Sources of variance

e Sampling (fragment) variance: Even though NGS is capable of producing millions
of sequence reads, these represent only a small fraction of the nucleic acid that is
actually present in the library. But also subject sampling (for a larger population)
and RNA sampling (from different cells or tissues)

e Technical variance:
— RNA extracted : Quality and Quantity

— Library preparation (fragmentation, enrichment, purification, amplification, GC %, fragment
orientation)

— NGS sequencing procedures (multiplexing- sequencing kit)

e Biological variance: The nascent variance that is present within a treatment or
control group.

e Variance effect : line < run < Library preparation << biological variance



O iz poll : Which step of an RNA-Seq experiment is the greatest

source of technical variability?

30 -

25 -

20 -

15

0 | | | |
Library RNA Data Sequencing
Preparation Extraction Analysis

Source RNASEQ Blog june 2014



Experiment design

1) how deep does one need to sequence?

2) how many biological replicates are necessary
to observe a significant change in expression?



Read coverage

Coverage = (Total Sequence)/Transcriptome Size

Transcriptome = ~500K transcripts
— Contamination
— Mitochondrial, etc...

Average Transcript length = 1000bp
Transcriptome size = 500K x 1kb = 500Mb
Total Sequence = 30M reads x 100bp x 2 = 6Gb
Coverage = 6Gb/500Mb =12X
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(A) N50 (B) Average transcript size

Contig length (nt)
1400
1
Transcript length (nt)
1000 1200

800
]

1000
|

10 30 50 10 30 50
Millions of Reads Millions of Reads

(C) Assembled reads (%) (D) Number of transcripts

90

1

Percentage of
Assembled Reads

1

75 80 85
1
No. of transcripts (x1000)
20 40 60 80 100
1

10 30 50 10 30 50
Millions of Reads Millions of Reads

Fig.6 Effect of sequencing depth on a transcriptome assembly. Four Paired-End
assemblies using 5, 10, 20, 30, 50 and 65 million reads were generated using
Qases.?” The N50 contig size (A), average transcript size (B), percentage of reads
used in the assembly (C), and number of transcripts (D) versus number of reads
used in the assembly are shown.

Goéngora-Castillo, E., & Buell, C. R. (2013). Bioinformatics
challenges in de novo transcriptome assembly using
short read sequences in the absence of a reference
genome sequence. Natural Product Reports. doi:
10.1039/c3np20099j
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Majority of expressed genes and AS events can be detected with
modest sequencing depths (~100 M filtered reads), the estimated

gene expression levels and exon/intron inclusion levels were less
accurate

e To detect expressed genes and AS events, ~100 to 150 million (M)
filtered reads were needed.

e For a DE analysis and detect 80% of events, ~300 M filtered reads
were needed

e For detecting Differential AS and detect 80% of events, at least 400
M filtered reads were necessary

Evaluating the Impact of Sequencing Depth on Transcriptome Profiling in Human Adipose.
Yichuan Liu et al., 2013.
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Bacteria

“AS
“IGR

E. Coli : 5000 genes ¥ GENE
intergenic (IGR)

antisense to ORFs or ncRNAs (AS)

Positions detected (millions)

Number of fragments

« A sequencing depth of 5-10 million non- rRNA fragments enables profiling of the vast
majority of transcriptional activity in diverse species grown under di- verse culture

conditions. »

Haas, B. J., Chin, M., Nusbaum, C., Birren, B. W., & Livny, J. (2012). How deep is deep enough for RNA-Seq profiling
of bacterial transcriptomes? BMC genomics, 13, 734. doi:10.1186/1471-2164-13-734



How deep is enought ?

Depends on the purpose of the experiment and the nature of
the samples (ENCODE).

e 100M of reads is sufficient to detect 90% of the transcripts
and 81% of the genes of the human transcriptome. (Tung et
al. 2011)

e 20M reads (75bp) is sufficient to detect transcripts expressed
at a medium or low level in the chicken. (Wang et al. 2011)

e 10 M of reads allow 90% of transcripts (human, zebrafish) to
be covered by an average of 10 reads. (Hart et al. 2013)
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Sample Size Estimates
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FIG.3. Sample size estimates for identifying a two-fold change vary by CV, not coverage. The y-axis
is the sample size needed to detect a two-fold difference in expression with 80% power, and 5% type 1
error, given at alpha = 0.01 for three different biological CV’s and sequencing depths.

Hart, S. N., Therneau, T. M., Zhang, Y., Poland, G. A., & Kocher, J.-P. (2013). Calculating Sample Size Estimates for
RNA Sequencing Data. Journal of Computational Biology. doi:10.1089/cmb.2012.0283



Sample size

Why increase the number of biological replicates?

e Generalizing the results to the population

e Estimate more accurately the variation of each
transcript individually (Hart et al. 2013)

e |mprove the detection of differential transcripts and

rate control false positives: TRUE from 3 (Sonenson
et al, 2013, Robles et al 2012.)



A | Sample size vs depth
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It’s up to you! (Haasetal, 2012, Liu Y. et al 2013)

* Detection of differential transcripts:
— (+) biological replicates

e Construction / transcriptome annotation:
— (+) depth & (+) conditions

e Search variants:
— (+) biological replicates & (+) depth
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Deciphering Sample Heterogeneity

e “RNA prepared from heterogeneous tissue
samples might contain only a fraction of the total
cell subpopulation of interest. Consequently, the
expression signal of any gene detected directly
from a complex sample is a convolution of
expressions of all present cell types”

Optimal deconvolution of transcriptional profiling data using quadratic programming with application to
complex clinical blood samples. Gong T, Hartmann N, Kohane IS, Brinkmann V, Staedtler F, Letzkus M,
Bongiovanni S, Szustakowski JD. PLoS One. 2011; 6(11):e27156. Epub 2011 Nov 16.

e DeConRNAseq : R package
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http://euler.bc.edu/marthlab/scotty/scotty.php

.. Scotty - Power Analysis for RNA Seq Experiments

Scotty is a tool to assist in the designing of RNA Seq experiments that have adequate power to detect differential expression at the level required to achieve
g n O experimental aims.

Marth Lab At the start of every experiment, someone must ask the question, "How many reads do we need to sequence?" The answer to this question depends on how many
of the truely differentially expressed genes need to be detected. A greater number of genes will be found with an increase in the number of replicates and an
Help increase in how deeply each existing replicate is sequenced. These parameters are limited by the budget for performing the experiment.

The power that is available using a given number of reads will differ between experiments. Ideally, pilot runs of your experiment (small runs of at least two
replicates from one of your conditions) should be used to assess the amount of biological variance that is in the system you are studying, and the amount of
sequencing depth that is required to adequately measure the genes. Alternatively, Scotty can be run on data from publicly-available datasets that are very close
to your expected experiment (species, library preparation protocol, sequencing technology, and read length).

The Matlab code that runs background calculations is available on github. Please contact us if your require assistance.
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http://euler.bc.edu/marthlab/scotty/scotty.php

e 0o Scotty - You need more power! e

Pilot Data: Upload your own pilot data or used a stored dataset as a model for your experiment. (?)

Power analysis results will not be predictive of the actual results unless the power analysis is performed on data that closely matches the experiment. Please
read about generating pilot data and selecting preloaded datasets before continuing.

(s) Upload Data

Upload a file containing the number of reads per gene for pilot data as a tab delimitted text file. See format info.

Choisir le fichier | aucun fichier sél.
Number of Replicates in Control: (2 :

Number of Replicates in Test (enter 0 if none): (2 ¢ |

()Use a stored dataset(?)
Choose a model dataset (Less Accurate): | 1 have my own pilot data. + | Dataset Descriptions
Cost Data (?)

Cost per replicate, excluding reads:

Control: | ]
Test: ]
Cost per millionreads sequenced: | [(?)
Alignment Rate (to genes or transcripts): 'so % (How to calculate?)

Constraints for Power Optimization(?)
Experimental Configurations to Test:

Maximum number of biological replicates per condition: [ 10 *

Assess the power of sequencing depths between 10,000,000 | and | 100,000,000 reads aligned to genes per replicate
Leave the following fields blank to leave parameters unconstrained:

Detect at least [so | % of expressed genes that are differentially expressed by a2 | X fold change at p</0.01

Experiment will cost no more than $ (€]
Limit measurement bias by measuring at least % of genes with at least % of maximum power (?)

Optimize Design

Results processing usually takes about 5 minutes.
e e e e e R e L e e e e e e R bt i e,
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Experiment design : PEPI IBIS recommandations

A

e C(larify the biological question:

RNA-seq can answer a lot of questions, but all questions will
not reply with a single RNA-seq experience level.

e Biologist / Bioinformatician / Statistician Trio required at
start construction of the project and in discussions

e Make biological replicates!
e Think multiplexing! € N
e Repeats/ Depth depends of the biological question

e Your budget should include : gselc PEP -
i _ ) Rlanification expérimentale
— Extraction of biological data, RNAseq
— Sequencing data storage, m— T
e . . nathalie.marsaud
- BIOInfOFma‘L'ICS analyzesl delphine.labourdette

fabrice.legeai

statistical analyzes Biolnfo  eyprionguenn

anne-laure.abraham

anne.delafoye
julie.aubert

B | OStat christelle.hennequet

brigitte.schaeffer
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Experiment design : ENCODE recommandations

RNA-Seq is not a mature technology.

Experiments should be performed with two or more biological replicates,
unless there is a compelling reason why this is impractical or wasteful

A typical R2 (Pearson) correlation of gene expression (RPKM) between two
biological replicates, for RNAs that are detected in both samples using
RPKM or read counts, should be between 0.92 to 0.98. Experiments with
biological correlations that fall below 0.9 should be either be repeated or
explained.

Between 30M and 100M reads per sample depending on the study.
NB. Guidelines for the information to publish with the data.

http://encodeproject.org/ENCODE/dataStandards.html

A statistical answer : Conclusions

This work quantitatively explores comparisons between contemporary analysis tools and experimental design choices for the
detection of differential expression using RNA-Seq. ...With regard to testing of various experimental designs, this work strongly
suggests that greater power is gained through the use of biological replicates relative to library (technical) replicates and
sequencing depth. Strikingly, sequencing depth could be reduced as low as 15% without substantial impacts on false positive or
true positive rates.

Robles, J.

A., Qureshi, S. E., Stephen, S. J., Wilson, S. R., Burden, C. J., & Taylor, J. M. (2012). Efficient experimental design and analysis strategies for the

detection of differential expression using RNA-Sequencing. BMC Genomics, 13, 484.
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RNA extraction
1 2 3 4

- (1) Isolation and purification of RNA typically involves disrupting cells in the
presence of detergents and chaotropic agents.

- (1) After homogenization, RNA can be recovered and purified from the total cell
lysate using either liquid-liquid partitioning or solid-phase extraction.

- (2) Typically the total RNA is then enriched for messenger RNA (mRNA). This can
be done by either directly selecting mRNA or by selectively removing ribosomal
RNA (rRNA).

- (3) To make the RNA suitable for RNA-seq it is typically fragmented

- (4) And then the quality and fragmentation are assessed.

http://rnaseqg.uoregon.edu
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RNA extraction

Isolate RNA

/ \

* Selection of target sequences e enzymatic,
via hybridization.(polyA) * metalion,
* Removal of non-target * heat,
sequences via hybridization. e sonication.
e Copy-number normalization
via DSN.
e Target enrichment via size-
selection

Ligate
sequencing
Adapters

15t Strand

Synthesis

http://rnaseqg.uoregon.edu
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RIN : RNA Integrity Number

The integrity of RNA is a major concern for gene expression studies :

The RIN algorithm is applied to electrophoretic RNA measurements and based on a
combination of different features that contribute information about the RNA integrity to

provide a more robust universal measure.

\

Fluorescence

o88583338

Fluorescence

cooooooee
O - N

~

RIN 10

WHa N

1
rrrrrrrrrr

24 29 34 39 44 49 54 59 64 69
Time (seconds)

RIN 2

515
10
0.5
0.0

----------

24 29 34 39 44 49 54 59 64 69
Time (seconds)

19 24 29 34 39 44 49 54 59 64 69
Time (seconds)

/

Degraded RNA samples :

Values over 8 are good enough for
transcriptome analysis (euk).

Values over 9 for bacterial RNA

For small RNAseq prefer values above
8.5 to ensure that you are fishing just
the physiological RNAs and not
degradation products

- Over representation of 3'-end fragments of transcripts (poly A targetted)
- Highly fragmented transcriptome -> hundreds of thousands transcripts
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Library construction : fragmentation

e Unlike small RNAs (microRNAs (miRNAs), Piwi-interacting RNAs
(piRNAs), short interfering RNAs (siRNAs) and many others), which
can be directly sequenced after adaptor ligation, larger RNA
molecules must be fragmented into smaller pieces (200-500 bp) to
be compatible with most deep-sequencing technologies.

e Common fragmentation methods include RNA fragmentation (RNA
hydrolysis or nebulization) or/and cDNA fragmentation (DNase |
treatment or sonication).

Each of these methods creates a different bias in the outcome.
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Library construction : fragmentation

RNA fragmentation

- Fragmentation of oligo-dT primed
cDNA (blue line) is more biased
towards the 3' end of the
transcript.

- RNA fragmentation (red line)
provides more even coverage along

Tag count

U fegrientation the gene body, but is relatively
3 depleted for both the 5' and 3'
¥ Mean count for 5099 genes 5 end S.

A

v o
M Al %W W m i S ——

Tag count

Mean count for a single gene, SES]

Nature Reviews | Genetics
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Library construction

PCR artefacts

— Many shorts reads that are identical to each other can be obtained from
cDNA libraries that have been amplified. These could be a genuine
reflection of abundant RNA species, or they could be PCR artefacts.

— Use replicates

Whether or not to prepare strand-specific libraries

— Strand-specific libraries are valuable for transcriptome annotation,
especially for regions with overlapping transcription from opposite
direction

— strand-specific libraries are currently laborious to produce because they
require many steps or direct RNA—RNA ligation, which is inefficient
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Prepare
sequence _
fragments. .~ . __——+1—> DNA/RNA fragment of known length
Ligate _ ,/.'_'"‘*t;-_::\'ii:-
adapters. ~ ﬁgﬁil . .
y' i i Single-end (SE) sequencing.
/"f/ & q g >
4 ‘f}-‘, ‘
j&:-? d K \i

__.endl o

|

e
I
< ________
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Sequencing terminology

Shotgun fragments

Fragments vs. Reads

Insert size
< >

5| AACGT ATCGA ¥

TTGCA _ TAGCT

Overlapping paired-end reads __

Typical paired-end reads — - —
Single-end read m———

e ——
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Contigs
NNNN
- - supercontig or scaffold
_,__ | ' —‘_l- !
assembly — — —
————— —— I ———————————— Genome/BAc

Mapping/alignment < > > >

> e >

—_— Repetitive regions
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Single-molecule real- i ieI::d oho i Sequencing by Chain terminati
Method time sequencing s U Erasssnoing Sequencing by synthesis (lllumina) = ligation (SOLiID ain fermin |?n
e pas ! (lon Torrent (454) . (Sanger sequencing)
(Pacific Bio) e sequencing)
5,000 bp average; i
Read length |maximum read[:lig;}gto? i up to 400 bp 700 bp to 250 bp I50+35 or 50+50 bp 400 to 900 bp
~22,000 bases :
99.999% consensus I I
Accuracy accuracy; 87% single-  98% 99.9% 99.9% 99.9%
read accuracy!4!! i
Reads per run so'oofnz;szﬁs:;fai%rr i up to 80 million 1 million p to 3 billion 1.2 to 1.4 billion N/A
Time per run 30 minutes to 2 hours 44 i 2 hours 24 hours et:u::\cd:ry:r'\ddzmzl:: length{4S] 1 to 2 weeks 20 minutes to 3 hours
Cost per 1 i
million bases |$0.75-$1.50 |$1 $10 .05 to $0.15 $0.13 $2400
(in US$) i
Longest read length. Fast.i . : otential for high sequence yield, Long individual reads.
| L Long read :
Advantages  Detects 4mC, 5mC, : els"s :eﬁni':set Fa: b pending upon sequencer model and 'Low cost per base. 'Useful for many
BmA.[46] el e ’ ired application. applications.
i Runs are
Moderate throughput. ' M ive and
Disadvantages Equi I:tfnt ;Z:gb::e Ll i e uipment can be very expensive LG imor;:t):::r:;:fa? r
ppm i \errors. Homopolymer wh g, G ' methods. practe arge
expensive. , St sequencing projects.
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4| I | -
lllumina Sequencing Technology

http://www.illumina.com/Documents/products/techspotlights/techspotlight_sequencing.pdf

Prepare Attach fragments to Bridge amplification. Denature
sequence ) surface of flow cell. DS molecule. Repeat.
fragments. .~ . ™
adapters. % # Vi
i \(/ s > \ / LY —>
-’5’“ i I'Il[||llll|ll|" ""."
/‘--’,,. " "y ‘l T 1 ’I ! : 11}/ ,xl || I||| I : I,/
e \\ lll :[lt BHED” ’
";#‘Zv' 7& # V!

Dense clusters of

identical fragments
are generated.

<'l§§§i )

! il
l“”', 1/'. th ‘Ih!h!
N& Al

‘ “H :Il%
H"! " 'n i s

Add labeled reversible
terminators. Emitted
fluorescence identifies
the incorporated base.
Cleave fluorescent
dye. Repeat.

[Number of cycles =
read length.]

Images converted
to “reads”.

0 —

o —
LY
o

o —

= GCTGA
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A | |
SP1
---------- >
Amplification Amplification
Element 1 Element 2
Insert
| |
B SP1
— =
L I ELEESSSSS— ]
[ —
e —
Amplification Barcode Sp2 Amplification
Element 1 Element 2
Insert
C [ | Index
L —————————— = lP —-—
L ————  ———0
I
A ——
Amplification SP2 Amplification

Element 1 Element 2
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A :Io" A A
T A AT
G #A TA % TG
c &T a1 &[Tz Gc
T c%cecle: Cr
A TAC tc PlCEF Ta
T ATrT AT §T AT
T 1'A 1A TT
AT 17 AT Ta
T AT AT ATl AT
A 1A A TA
é(;; AT §T AG
GA Gc
G cc &6 Cc
¢'C cc ic Ca
AC ac AlCly Aa
ATA A A AL AT

TATATAL T

T T T
adapter A

adapter B, covalently bound to glass slide




read as:

Cycle 1

OCEFo0rF<rrIr <000 < -

O FOOR<FFRFI<EFL<000CA
O FOOFA<FFI<FLCOO0OOJCA+

(]

=2

g

o0
L)

Kel
Bau
2 [°]
(88
@
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Cycle 2 read as: @ (A

“prephasing”

—->»>»000>—HA> 4> -H0O

S>>000>»HA>-HA4HA>HQ
- >>000>-A>-H-H>
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Cycle 3 : errors

O

® o
(A (A
Cycle 3 readas: @ (C)

O
-|>>oom>-|>-|-|>-|o@%
0_|>
> o
&

->>000>-A>-A-A> -
S>>0 00P>—AP>AHA-HA> HO

“postphasing”



Later cycles with more errors

Cycle 16

read as:

PVDPPIIIIVIIVPIV

29999999



@ Station Biologique
o Roscoff

Basecall qualities

70 -

60 -

50 -

quality

40 -

|
0 20 40 60 80
position
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