
This work is licensed under a Creative Commons 
Attribution-NonCommercial-ShareAlike 4.0 International 
License. [link]

Data Management
with Python

1

January 2018 Session

M. HOEBEKE
Ph. BORDRON
L. GUÉGUEN

G. LE CORGUILLÉ

http://creativecommons.org/licenses/by-nc-sa/4.0/


Outline : Session 1

From “Hello world” to your first Python Module

1. Introduction
2. Running Python programs
3. Reading Data from Text Files
4. Essential Data Types
5. Flow Control Instructions
6. Structuring Data
7. Handling Program Arguments
8. Using Modules
9. Writing Functions

10. Turning a Python Script into a Module
2



 Outline : Session 2

Working With Heterogeneous Data

1. Regular Expressions: re
2. Methods for Sorting Data: sort & lambda functions
3. Storing Intermediate Results: pickle
4. Using Tabular Data : csv
5. Intermezzo : Virtual Environments
6. A Word on XLS(X) Files : openpyxl
7. Grabbing Data From the Web :  requests & json
8. Managing Configuration Files : configparser
9. Interacting With the Operating System : os

3



Outline : Session 3

Object Oriented Python

1. What is Object Oriented Programming ?
2. Object Oriented Python
3. Unit Testing your Python Code
4. Using the logging Module
5. The Basics of Exception Handling

4



Outline : Session 4

Domain Specific Python Modules

1. The BioPython toolkit
2. Graph Data and NetworkX

5



Outline : Session 1

From “Hello world” to your first Python Module

1. Introduction
2. Running Python programs
3. Reading Data from Text Files
4. Essential Data Types
5. Flow Control Instructions
6. Structuring Data
7. Handling Program Arguments
8. Using Modules
9. Writing Functions

10. Turning a Python Script into a Module
6



Why Python ?

7

P
Y
P
L

© TIOBE



Why Python ?

© DocSity (www.docsity.com)

8

http://www.docsity.com


Which version of Python ?

Two major versions are still actively maintained :
● The 2.x branch (2.7 being the last and latest) :

○ Found on many platforms as default version (including your workstations, 
and the ABiMS cluster nodes)

○ Accessible unambiguously through the python2 command
● The 3.x branch (3.6 being the latest as of this writing) :

○ Available and installed by default but not configured as default on many 
recent Linux distributions

○ Accessible unambiguously through the python3 command

Whenever possible, prefer the 3.x version
(even if the differences with 2.x are not obvious for this introductory course)

To check which version comes configured as default :

[mark@~] python --version
Python 2.7.14

Don’t worry : we’ll learn how to master which version to use
(even if the differences with 2.x are not obvious for this introductory course)

9



Writing & Running Python Programs

● A Python program is made of one or more sequences of properly formatted 
lines of text containing instructions that can be executed by the Python 
interpreter.

● Python programs are often stored in (text) files conventionally suffixed with .py
● The Python Interpreter translates your program code (text) into a 

machine-readable representation

Create

gedit myprog.py

Run

python3 myprog.py

Fix bugs

gedit myprog.py

Improve

gedit myprog.py

Basic Python Development Process

Re-run

myprog.pyc

10



Writing & Running Python Programs

Using Python in interactive mode :
★ Done by running the interpreter without specifying à program file
★ Suitable for performing small checks or tests

[mark@~] python3
Python 3.6.3 (default, Oct  3 2017, 21:45:48) 
[GCC 7.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> print("My First Python Line of Code")
My First Python Line of Code

The Python prompt

The code I’ve typed

The result of the evaluation of the code I’ve typed

11



Writing & Running Python Programs

Developing With an Integrated Development Environment (IDE) :
★ Platform Independent : Linux, Windows, MacOS X
★ Streamlines the Development Process : Project File Organization / 

Coding / Debugging / Version Control / Dependency Management

https://www.jetbrains.com/pycharm/

12

http://www.youtube.com/watch?v=qxb5JULCumU
https://www.jetbrains.com/pycharm/


Writing & Running Python Programs

Exercise 1

Write & run your helloworld.py script using PyCharm, based on the 
previous screencast, with:

- the same project name
- the same directory layout
- the script’s contents :

print('Hello world')

13



Writing & Running Useful Python Programs

A useful program :
1. Reads some data (from a file, from the network)
2. Processes the data (mainly in memory) to compute the wanted results
3. Generates the results as output (files)

Program memory

Input 
File

Output 
File

Input Data
Output 
DataRead

Process

Write

14



Writing & Running Useful Python Programs

Issues to consider when writing a useful program :

1. What are the most appropriate data structures for the processing step(s) :
a. easy access to the elementary data needed for processing
b. logical grouping of elementary data chunks used together
c. minimal in-memory redundancy

2. How to fit the input data in these appropriate data structures :
a. what are the accepted/recognized input formats ?
b. are there already existing tools to read these formats ?
c. how to balance slow read operations with the program’s memory 

footprint ?

3. What are the requirements for the output file(s) :
a. what is the expected output format(s) ?
b. are there already existing tools to write these formats ?
c. when is it possible to start writing the results  (at the end only, or are 

there intermediary results available early-on) ?
 

15



Reading Data from Text Files

A Text File contains a series of lines. Each line is made of a series 
of characters followed by a newline character.

 

>CK_Syn_RCC307_0001:174-1313:1|dnaN
MKLVCSQAELNGSLQLVSRAIAGRPTHPVLANVLVTADAAAGRISLTGFDLSLGIQTSFA
AVVESSGAITLPAKLFTDIVSRLPADGPLTLACPEGEEQTELSALTGSYQMRGLSAEDFP
DLPLAQNGQPLLLSGEAFAEGLRSTLFASSGDESKQILTGIHLKVEDGGLEFAATDGHRL
AVRRNGAGGQEGAESFAVTVPARSLRELERLLSARPSEESISLFCDRGQVVFLWADQVLT
SRTLEGTYPNYGQLIPESFARTISLERKPFIAALERIAVLADQHNNVVKLTADPASGQLQ
LSADALDVGSGSESLAAQINGEEIAMAFNVRYLLEGLKAMADATVRLNLNSPTSPAVLSA
DEDGEAGFTYLVMPVQIRS*
>CK_Syn_RCC307_0002:1314-2042:1|SynRCC307_0002
MPLPRQILISELLRSRLRDELGQDLGVGHQVWMHPPCHRLLGWSSRPSAFGPRRSVWRLD
(...)

line 1 line 2 

16



Reading Data from Text Files

In Python, reading a text file can be done as follows : 

infile = open('/path/to/my/file.txt')
data = infile.readlines()
infile.close()

● Line 1 :
○ The open() function is called to open(!) the input file, called 

/path/to/my/file.txt
○ A reference to the opened file is stored in a variable called infile 

using the assignment operator (equals sign)
● Line 2 :

○ The readlines() function is applied to the infile reference using 
the dot operator. It reads the file contents, line by line and returns the 
result.

○ The result is stored in the data variable.
● Line 3 :

○ The close() function is applied to the infile reference to free any 
resources (memory) used for reading the file.

17



Variables : Scalar Types

Now, how can we access the contents of the file, a.k.a what is the nature of 
the data variable ?

Python variables come in various types, among which :
Scalar types, used to store a single value, including :

a. String variables used for storing letters, words, texts…

b. Numerical variables used for storing numbers :
i. Integer values :

ii. Floating point values :

c. Boolean variables, used for storing True or False values

language = 'Python.'

one = 1

bioInformaticsIsEasy = True

18

pi = 3.141592



Variables : Container Types

Container types (or collections), are used to store several elements of any 
type. They include :

a. Lists -  used to store indexed collections of elements

b. Tuples - used to store immutable indexed collections of elements

c. Dictionaries - used to store {key:value} pairs

d. Sets - used to store unordered unique elements

weekendDays = ['Saturday','Sunday']

languageCodes = {'FR' : 'French',
                 'EN' : 'English'}

19

 seasons = set(('Spring','Summer',
 'Fall','Winter'))

timeSpans = ('AM','PM')



The actual type of a variable can be determined using the type() function :

will display :

Variables : Type Determination

Variables are created when they are first assigned a value using the 
assignment operator (=).

In our example, infile is created on completion of line 1, and data is 
created on completion of line 2.

Variables are “destroyed” when they are no longer visible (more on that later)

>>>data=[1,2,3]
>>>type(data)

class<'list'>

Don’t bother just yet

20



Variables : Type Conversions

Type conversions (when they make sense) are possible using the destination 
type name as function :

- any scalar type can be converted to a string variable, using str()
- integer and float types can be inter-converted using int() or float()
- when applicable, strings can be converted to integers or floats using 

int() or float()

>>>booleanTrue = True
>>>booleanString = str(booleanTrue)
>>>booleanString
'True'
>>>floatPi = 3.141592
>>>strPi = str(floatPi)
>>>strPi
'3.141592'
>>>intPi = int(floatPi)
>>>strExp = '2.71828'
>>>floatExp = float(strExp)
>>>floatExp
2.71828

21



Variables : Using Lists

List elements are accessed through their numerical index, starting with zero, 
as in :

Negative indices can be used to access elements from the end of the list :

List slices can be extracted using colons.

Warning : the slice does not include the element with the upper index.
Either of the two indices (or both!) can be ommitted:

- without lower index, the slice starts at the beginning of the list.
- without upper index, the slice extends to the end of the list

firstLine = data[0]

lastLine = data[-1]

firstThree = data[0:3]

allButLast = data[:-1]
completeCopy = data[:]

22



Variables : Using Lists

Lists grow automatically in size, when adding new elements with the append() 
function :

Or by adding other lists with the extend() function:

New lists can be built by using the addition operator (+)

weekEndDays.append('Friday')

extraLongWEs = weekEndDays + ['Thursday']

weekEndDays.extend(['Monday','Tuesday'])

The length of a list can be determined with the len() function :

numberOfWEDays = len(weekEndDays) 

23



Working with Text Files

Exercise 2

Write a countlines.py script (in the src/ex02 folder of your project) 
printing the number of lines in the Syn_RCC307.faa file located in your 
data directory.

Hint - the path to the data file is :
'../../data/fasta/Syn_RCC307.faa'

24



Variables : Using Strings

Strings share some basic features with lists, such as :
- Bracket operators to access elements and/or slices

- String concatenation with the + operator

- Use of the len() function

firstLetter = stringExample[0]

helloWorld = 'Hello ' + 'World'

>>>len(helloWorld)
11

Strings can be built from lists using the join() function

>>>fruitString = ', '.join(['apples','oranges','bananas'])
>>>type(fruitString)
<class 'str'>
>>>fruitString
'apples, oranges, bananas'

25



Strings (as almost any variables) can be modified using the assignment 
operator =

Variables : Using Strings

Strings can be separated into list elements using the split() function

>>>fruitList = fruitString.split(', ')
>>>type(fruitList)
<class 'list'>
>>>fruitList
['apples','oranges','bananas']

26

>>>greetings = 'Hello'
>>>greetings = greetings + ', world.'
>>>greetings
'Hello, world.'



Lists, Loops and Block Structures

27

A straightforward way to access each element of a list in turn relies on the for 
loop, written as follows :

for loopVariable in listVariable :
# do some clever processing
# using loopVariable
print(loopVariable)

Instruction block executed for each successive element in listVariable. The values of 
the successive elements are assigned to loopVariable.

for loop keywords

in
de

nt
at

io
n

Each line of the instruction block is indented (space(s) or tab) wrt. the line 
with the for … in … : instruction.



A First Loop

Exercise 3

Write a join.py script (in the src/ex03 folder of your project) building a 
list with the following strings :

'Union','of','the','Snake'

Then, using a for loop, concatenate the list elements to form a string 
where the words are separated with a space character.
After the loop has completed, print the value of the string, which should 
be :

'Union of the Snake '

How would you remove the trailing space ?

28



Block Structures and Conditionals

29

The most often used conditional control flow structure is the if  (else) 
construction, which is build as follows :

if boolean expression :
# boolean expression is True here
print('Condition satisfied.')

else :
# boolean expression is False here
print('Condition not satisfied.')

if conditional keywords

in
de

nt
at

io
n

Optional Instruction block executed when the boolean expression evaluates to False.

Instruction block executed when the boolean expression evaluates to True.

optional else clause



Conditionals and boolean expressions

30

Boolean expressions are expressions whose evaluation yields either True or 
False.
They very often rely on one of the following operators :

- the equality operator : ==

- the inequality operator : !=

- comparison operators : > (greater than), >= (greater or equal), < (lesser 
than), <= (lesser or equal)

if language == 'Perl' :
print("You're in the wrong class, mate.")

if language != 'Python' :
print("You're in the wrong class, mate.")

if distanceKm <= 1.0 :
print("You're better of walking.")



Conditionals and boolean expressions

31

Caution : don’t try to use operators with incompatible types

>>> distanceKm='One'
>>> if distanceKm <= 1.0 :
...     print("You're better of walking.")
... 
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>

TypeError: '<=' not supported between instances of 'str' 
and 'float'



Conditionals and boolean expressions

32

Boolean expressions can be combined with logical operators : and and or
- the conjuction operator : and

- the disjunction operator : or

Boolean expressions can be negated using the not operator :

if distanceKm <= 1.0 and weather == 'Sunny' :
print('You're better of walking.')

if winspeedKmH >= 100.0 or weather == 'Overcast' :
print('Consider taking a cab.')

if not weather == 'Sunny' :
print('An umbrella might be useful.')



Conditionals and boolean expressions

33

- Logical operators have priorities : not > and > or

- When in doubt, using parentheses may lift ambiguities

if distanceKm <= 1.0 and weather == 'Sunny' or weather == 'Mild' :
print('You're better of walking.')

if ( distanceKm <= 1.0 and weather == 'Sunny' ) or weather == 'Mild' :
print('You're better of walking.')

if distanceKm <= 1.0 and ( weather == 'Sunny' or weather == 'Mild' ) :
print('You're better of walking.')

Is interpreted as

When the intended expression would be



I’m (almost) a Bioinformatician now

Exercise 4

Write a readseq.py script (in the src/ex04 folder of your project) taking 
as input, the already used file:

'../../data/fasta/Syn_RCC307.faa'

and building :
- a list (called seqIds) with the sequence identifiers
- a list (called sequences) with the sequence amino acids.

Check that at index 1234 :
- the identifier is : 

>CK_Syn_RCC307_1247:1103206-1103493:1|SynRCC307_1247
- and the length of the amino acid sequence is : 96

Caution : when reading a line, Python also reads (and stores) the newline 
character ending the line.

34



35

When Structuring Data Makes Sense

In the previous exercise, information about a single sequence was stored in two 
separate collections :

- One collection for the sequence identifiers
- One collection for the amino acids

The relationship between the two was implicit through the use of an identical 
index.

It makes more sense to explicitly link an identifier with its amino acids using a 
dictionary.

One possibility, usable when the identifiers are unique :
- The dictionary key is the sequence identifier
- The associated information is the amino acid sequence.

{ '>CK_Syn_RCC307_1247:1103206-1103493:1|SynRCC307_1247' :
'LSMAEQNSSSASLLLSALTGAAVGAAGLTWWLLSRAERRQALGDQFKRLGLNGAPTNGSSAQGSPENLEQKVNRLNL
AIEDVRRQLESMAPESSN*' }



36

Dictionaries : Basic Usage

Creating an empty dictionary :

Adding an element to a dictionary :

- dictKey is often a string variable,
- dictInfo can be a variable of any type.

For example when both dictKey and dictInfo are strings:

Removing an existing element from a dictionary :

Retrieving the number of elements of a dictionary :

sequenceInfo = {}

sequenceInfo[dictKey] = dictInfo

sequenceInfo['>sample_seq_id'] = 'ADGKORML(...)' 

del(sequenceInfo[dictKey])

totalSequences=len(sequenceInfo)



37

Dictionaries : Basic Usage

Checking if a dictionary contains a specific key with the in operator :

More frequently used associated to the not operator to check whether a key is 
not already present in a dictionary :

Retrieving the list of keys of a dictionary :

Can be used to loop over dictionary entries :

if seqId in sequenceInfo :
print(seqId+' is already known!')

if seqId not in sequenceInfo :
sequenceInfo[seqId] = residues

dictKeys = sequenceInfo.keys()

for dictKey in sequenceInfo.keys():
residues = sequenceInfo[dictKey]



38

Dictionaries : Basic Usage

Retrieving the list of values of a dictionary :

Can be used to loop over dictionary entries :

Looping over complete dictionary items :

allResidues = sequenceInfo.values()

totalResidues = 0
for seqResidues in sequenceInfo.values():

totalResidues = totalResidues + len(seqResidues)

for (id,residues) in sequenceInfo.items():
print('Seq.: '+id+' has '+len(residues)+' aa.')



I’m (almost) a Bioinformatician now

Exercise 5

- Copy readseq.py to directory src/ex05/readseq.py

- Change readseq.py to use a single sequence dictionary instead of a 
pair of lists.

- Check that there are no duplicated sequence identifiers in the data 
file.

- Check that the length of the sequence with identifier

>CK_Syn_RCC307_1247:1103206-1103493:1|SynRCC307_1247

is indeed 96.

39



40

Handling Command-Line Arguments

The current version of our script has one major shortcoming: the name of the 
data file is hard coded. Meaning that in order to parse another data file, we have 
to modify our code !

To overcome this flaw, it would be nice to be able to specify the name of the 
data file as argument to our script as in :

This can be done using a module that comes standard with Python.

[mark@~] python3 readseq.py mysequences.faa



41

Using Python Modules : argparse
A Python module is a package or library providing a set of features aimed to be 
reused across programs (ex. biopython  for bioinformatics, numpy for 
scientific computation, networkx for graph manipulation…) 

These features can include: 
- data structures
- functions
- classes (which we’ll see later on)

To access the features in a Python program, the module needs to be imported 
in the program.

To import the complete set of features of a module in a Python program, the 
import instruction is used. The features included in the module are then 
accessed in the Python program by prefixing the feature name with the module 
name :

import moduleName
…
result=moduleName.featureName()



42

Using Python Modules : argparse

It is also possible to import specific features supplied by a module by using the 
from … import instructions. Accessing the feature can then be done directly, 
without prefixing it with the module name :

from moduleName import featureName
…
result=featureName()

The former method is recommended over the latter one. It is less subject to 
name collisions which can occur when two modules define a feature with the 
same name.
Its drawback is that it imports the whole contents of the module. But that’s 
usually not a problem.

Each standard module is duly documented on the Python reference 
documentation web site :

https://docs.python.org

Double-check however that you are reading the documention matching your version of Python
https://docs.python.org/3/howto/argparse.html is not https://docs.python.org/2/howto/argparse.html

https://docs.python.org
https://docs.python.org/fr/3.5/howto/argparse.html
https://docs.python.org/2/howto/argparse.html


43

Using Python Modules : argparse

The argparse module provides all that’s needed to make use of command-line 
arguments inside à Python program, and relies on a three step method :

1. Declare the structure of the possible command-line arguments and options.
2. Call a function that fills the structure by analyzing how the program was 

run.
3. Use the structure to retrieve values that were provided for arguments and 

options on the command-line.



44

Using Python Modules : argparse

Step 1 : define the ArgumentParser

Create the parser using the ArgumentParser()(special) function. Use a named 
argument - description - to give some human readable information on the 
program’s purpose.

Declare that our program will take an argument (the input file with the fasta 
sequences) using the add_argument() function. This argument will be 
accessible in our program through (the dictionary key) infile. Add some help 
text describing the argument.

import argparse
…
parser=argparse.ArgumentParser(description='Read sequences 
from a multi-fasta file')
parser.add_argument('infile',help='multi-fasta input file')



45

Using Python Modules : argparse

Step 2 : Tell the parser to analyze the command-line.

The parse_args()function will: 
- check whether the command-line matches the previously declared 

structure, and generate an error message if not.
- build a dictionary-like structure where the “keys” will be named after the 

arguments that were declared.

The resulting dictionary-like structure will be stored in the args variable.

args=parser.parse_args()

Step 3 : Use the dictionary-like structure to retrieve values of arguments passed 
on the command-line

print('The input file is: '+args.infile)

In fact it’s an object. More on that later



Handling Command-Line Arguments

Exercise 6
- Copy readseq.py to src/ex06/readseq.py
- Change readseq.py to use the argparse module to handle a single 

command-line argument : the name of the file with the sequences.
- Use PyCharm to build three run-configurations for readseq.py :

- A configuration with the already used sequence file as argument.
- A configuration with no arguments (to assess that argument checking 

is done correctly by argparse)
- A configuration with a -h argument (to check the help output that is 

automagically generated by argparse)

46

http://www.youtube.com/watch?v=Cx1rzC8xRtM


47

Adding Depth to Dictionaries

Until now, dictionary entries used only scalar types (strings) as element values. 
Often, for efficiency reasons, we want to access several chunks of information 
using a single key.

For instance, a sequence, identified by a fasta identifier, can be described by its 
nucleotide sequence, its amino acid sequence, their respective lengths, the 
GC-percent, the codon-usage frequencies and so on.

To handle such “records”, the dictionary value is itself a dictionary where the 
keys are the descriptors or attributes, and the values, the… values(!).

sequenceEntry = { 'nucleotides' : 'ATAGCGT...',
 'nucleotidelength' : 2562,
 'residues' : 'GIEDKD...',
 'residuelength' :  854,
 'gcpercent' : 61.0
}

sequenceInfo[sequenceId]=sequenceEntry



48

Adding Depth to Dictionaries

When using record-like structures as dictionary elements, keep in mind that:

- the descriptor names are arbitrary and subject to spelling inconsistencies 
between records.

- there is no guarantee that all descriptors are initialized for each record.

sequenceEntry = { 'nucleotydes' : 'ATAGCGT...',
...

}
sequenceInfo[sequenceId]=sequenceEntry
for (id,info) in sequenceInfo.items() :

print(info['nucleotides'])

Will raise an error when processing 
the sequenceEntrywith the typo.



49

Adding Depth to Dictionaries

Best practice 1 : Use “constant variables” for record descriptors instead of 
plain strings. By convention, constant variables are variables whose value does 
not change after initialization. They are written in uppercase.

Best practice 2 : Initialize all descriptors when creating a dictionary entry. For 
descriptors whose value cannot be determined at creation time, use the special 
None value.

NUCLEOTIDES_KEY='nucleotides'
RESIDUES_KEY='residues'
GCPERCENT_KEY='gcpercent'
...
sequenceEntry = { NUCLEOTIDES_KEY : 'ATAGCGT...',

 RESIDUES_KEY : 'GIEDKD...',
 GCPERCENT_KEY : None,

...
}



Handling Command-Line Arguments

Exercise 7

- Copy readseq.py to src/ex07/readseq.py
- Enhance readseq.py to use a record-like structure for storing the 

residues.
- Use “constant variables” to define and access record descriptors.

50



51

argparse : Arguments vs. Options

As seen before, program arguments are words following the command (script) 
name. Mapping of program arguments to variables in a Python script is done 
according to the position of the argument in the argument list. Arguments are 
mandatory.

Program options are composite : they include an option name (in short or long 
form) and an option value. Their relative positions on the command-line are not 
important. They can be optional(!) or required.

[mark@~] python3 readseq.py -n mynucsequences.fna  -r \  
myaasequences.faa

[mark@~] python3 readseq.py --residues \ 
mynucsequences.faa  --nucleotides myaasequences.fna



52

argparse : Arguments vs. Options

In argparse, options are declared in the same way arguments are, with the 
following differences :

- The variable name must start with a dash (for the short form) or a double 
dash (for the long form)

- A boolean required parameter can be used to make an option mandatory (or 
optional)

import argparse
…
parser=argparse.ArgumentParser(description='Read sequences 
from a multi-fasta file')
parser.add_argument('-n','--nucleotides',help='multi-fasta 
input file with nucleotide sequence',required=True)



53

argparse : Arguments vs. Options

argparse also handles the special case of flags : options without a value, 
whose mere presence on the command-line is enough. For example:

-  the -v (or --verbose) flag to generate a lot of output on the program’s 
progress

-  the -d (or --debug) flag to run the program in debug mode.

Flags are declared as ordinary options, with the addition of a specific action 
named parameter to describe what to do when the option is present.

import argparse
…
parser=argparse.ArgumentParser(description='Read sequences 
from a multi-fasta file')
parser.add_argument('-v','--verbose',action='store_true')
args=parser.parse_args()
if args.verbose is True :

print('Entering verbose mode')



Handling Command-Line Arguments

Exercise 8

- Copy readseq.py to src/ex08/readseq.py
- Extend readseq.py to use two options :

- an ‘-n’ (‘--nucleotides’) option to specify the fasta input file containing 
the nucleotide sequences,

- an ‘-r’ (‘--residues’) option to specify the fasta input file containing the 
amino acid sequences.

- read the two files, and store information about the two sequence types 
in a single record-structured dictionary

- Allow the use of a -v (‘--verbose’) option printing :
- the total number of sequences read,
- the number of sequences without an associated nucleotide sequence,
- the number of sequences without an associated residue sequence.

- Run the program using files :
- '../../data/fasta/Syn_RCC307.fna' as nucleotide input file.
- '../../data/fasta/Syn_RCC307.faa' as amino acid input file.

54



55

Organising Code in Functions: Definitions

The latest version of our script contains two code sections that are almost 
identical: they read a multi-fasta sequence file and store the result in a 
dictionary record structure.

Duplicating code is evil !

Python offers a construction that allows us to group instruction blocks that can 
be executed (called) at will later on. The execution can also be parameterized 
with arguments. Such a construction is called a function.
The location where the function is declared, with its arguments and its code is 
called the function definition and has the following syntax :

def myFunc(<arguments>) : 
# do some clever processing
# inside the function

fu
nc

tio
n 

de
fin

iti
on

 
ke

yw
or

d

function 
name

argument
list



56

Organising Code in Functions: Calling a Function

The location(s) in the program where we want the function to be executed are 
called the function calls. The syntax of a function call is:

A function printing ten times “Hello” could be written as:

And called with:

myFunc(<argument values>)

function 
name

argument
value list

def tenTimesHello() :
for index in range(0,10) :

print('Hello')

tenTimesHello()



57

Organising Code in Functions: Arguments

The use of arguments allows us to parameterize the function execution. Each 
argument in the argument will be given a (potentially different) value on each 
function call.

A function printing ten times the message given as argument could be written 
as:

And called with:

or with:

def decaPrint(message) :
for index in range(0,10) :

print(message)

decaPrint('Hello')
prints ten times ‘Hello’

decaPrint('Goodbye')
prints ten times ‘Goodbye’



58

Organising Code in Functions: Arguments

When defining a function, arguments may be given a default value. Arguments 
with a default value may be omitted from function calls.

A function printing a message given as first argument a number of times 
specified in the second argument, with a default value can be written as :

And called with:

def spamPrinter(message,repeats = 10) :
for index in range(0,repeats) :

print(message)

spamPrinter('Python Rulez',100)
prints 100 times ‘Python Rulez’

spamPrinter('Python is easy')
prints 10 times ‘Python is easy’

spamPrinter('Python is a snake',repeats=3)

prints 3 times ‘Python is a snake’



59

Organising Code in Functions: Return Value

Functions can return data to the caller on completion with the return 
statement :

When calling such  a function, the result can be stored in a variable:

def myFunc(<arguments>) :
result = None 
# do some clever processing
# inside the function and
# store the result in the
# result variable
return result 

myFuncResult =  myFunc(<arguments>)



60

Organising Code in Functions: Return Value

A function returning the sum of the list elements given as argument can be 
written as :

And called with:

def sumList(values) :
total = 0
for element in values :

total = total + element
return total

myListTotal=sumList([1,2,3,4,10,20,100,2000])

stores the sum of 1,2,3,4,10,20,100,2000 in variable myListTotal



61

Organising Code in Functions: Argument Changes

Functions can also modify the contents of their arguments. For arguments are 
of scalar types (strings, numbers, booleans), the modification is kept local to 
the function block. For arguments of container types, the modifications will 
persist after the function has returned.

def myFunc(intArg,listArg) :
intArg = intArg + 10
listArg.extend(['A','Ton','of','Pie'])

intVal = 1
listVal = ['I','Like','To','Eat']
myFunc(intVal,listVal)
print(intVal)  # prints 1 : not changed outside myFunc.
print(listVal) # prints ['I','Like','To','Eat','A',
               # 'Ton','of','Pie'] : change persists.



Functions

Exercise 9

- Copy readseq.py to src/ex09/readseq.py
- Enhance readseq.py to :

- define a function capable of reading the contents of a multi-fasta file.
- call the function for reading the nucleotide input file
- call the function for reading the amino acid input file

- Run the program using files :
- '../../data/fasta/Syn_RCC307.fna' as nucleotide input file.
- '../../data/fasta/Syn_RCC307.faa' as amino acid input file.

62



63

Organising Code : From Scripts to Modules

A set of functionalities should typically be reusable across various scripts. Until 
now, our script file (readseq.py) contains a single useful function 
(readFastaSequencesFromFile), and the “main” code calling the function 
parameterized with command-line arguments.

If we want to reuse the readFastaSequencesFromFile function in other 
scripts, without cutting & pasting its definition !!!, we can store it in a module.

A module contains a collection of definitions (constants, classes) and 
declarations (functions). It should not contain any “main” code that will be 
directly executed when the module file is loaded.

In order to be able to import a module, it has to be located in one of the 
directories where the Python interpreter looks for modules.

With PyCharm, these directories have to be marked explicitly. This is done by 
right-clicking on the directory, and choosing Mark Directory As -> Sources 
Root. 



64

Organising Code : Making Scripts importable

A Python script may contain a mix of definitions (constants, functions, classes) 
and of instructions at the outermost scope. These instructions are executed 
whenever the script is loaded either to be run as a script or through an import 
instruction.

This may not be desired inside scripts that want to access functions defined in 
the script (using import) but don’t want the code in the outermost scope to be 
run.

USEFUL_CONSTANT='useful value'

def usefulFunction(args):
…

usefulFunction('argval')
This function call gets executed whenever the script 

module is imported.



65

Organising Code : Making Scripts importable

A special variable (__name__), maintained by the Python interpreter allows to 
check if a Python file is loaded as a script to be run or as a module.

In the former case, the value of __name__ is '__main__' and the test can be 
written as:

It is a highly recommended practice to use the __name__ based test in every 
Python file so as to promote the reuse of its contents.

USEFUL_CONSTANT='useful value'

def usefulFunction(args):
…

if __name__ == '__main__':
usefulFunction('argval')

This function call gets only executed when the file is 
loaded as a script. Not when imported as a module.



66

Organising Code : Making Scripts portable

Python programs and modules are written by people all over the world on 
various platforms. They do not always use the same character encoding 
standards. To lift any ambiguity regarding these standards, Python encourages 
the use of a specially formatted comment at the beginning of scripts and 
modules. 

This comment looks like:

And will allow you to use any special character (most notable those with 
accents), either by directly typing them the script or module,  or by printing 
strings read from a file and containing these characters.

# -*- coding: utf-8 -*-
The name of the encoding standard



67

Organising Code : Making Scripts executable

On Linux/Unix systems, Python scripts can be run directly from the 
command-line (i. e.  not as arguments given after the name of the python 
interpreter), provided the following two conditions are met:

1. They must be executable (does chmod +x ring a bell ?)

2. They must specify where to find the Python interpreter to run the contents 
of the script. This is done by putting a special comment as the first line of 
the script :

This will run the /usr/bin/env command and tell it to look for a program 
named python3. That program will then be used to run the contents of the 
script.

The advantage is that this ensures that the script will be run by a Python 3.x 
interpreter but it lets the script’s user configure her environment to select which 
version of the Python 3.x interpreter to use.

#!/usr/bin/env python3



68

Organising Code : A Script Template

To sum up, this is what a well-behaved script or module should look like:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

# lots of useful python code here:
# constants/variables
# functions classes
# classes

if __name__ == '__main__' :

# process arguments using argparse
# use classes, functions and
# constants/variables defined above
# or imported from other modules.



69

Modules: Efficiency Concerns

The method we use to read data from sequence file has a major drawback: it 
loads the whole contents of the file at once in memory.

This does not scale well! 

And is not suitable to figure in a decent module. Python provides an idiom to 
perform efficient line oriented data reading using the with … as … 
construction which can be used as follows :

The with … as … construction starts a new block. The (file) variable specified 
after the as keyword is usable inside this block. At the end of the block, the 
variable goes out of scope and the file is automatically closed.
The for loop reads the file one line at a time needing memory to store only a 
single line.

with open('myfile.dat') as datafile :
for line in datafile :

# process the contents of line



70

Modules: Documentation

The success of a module significantly depends on its reusability, in which the 
documentation plays a major role.

The recommended way to document Python code is detailed in a Python 
Enhancement  Proposal (PEP) :

https://www.python.org/dev/peps/pep-0257/

It relies on so-called docstrings : special blocks of formatted text delimited by 
three double-quote characters (""")

Docstrings should be present at different levels of Python modules :
- At the top of a module file, with a description of the module’s purpose
- After each function declaration to explain how the function can be used

When docstrings span several lines, the first line is considered a summary of 
the docstring block.

Docstrings can be used by documentation generation tools (ex.: Sphinx) to 
generate(!) HTML or PDF versions of the documentation.



71

Modules: Documentation

Example of a module documentation:

Example of a function documentation:

BTW: PyCharm generates docstring templates for functions.

"""GreatModule: a Module to Achieve Great Things

The GreatModule contains a whole lot of useful functions
and classes that everyone should use.
"""

def greatFunction(arg1,arg2=[],arg3=None) :
"""Perform some great function on data.

:param arg1: the first argument
:param arg2: the second argument (default value = 

empty list)
:param arg3: the third argument (default value = 

None)
:return: some very useful value.

"""

The summary line

do
cu

m
en

ta
tio

n 
ke

yw
or

ds



Modules

Exercise 10

- Copy readseq.py to src/ex10/readseq.py
- Create a module named sequencetools.py  containing the 

readFastaSequencesFromFile code, and the definitions it relies on.
- Enhance the code reading the sequence data from a file
- Add comments at the module and function level
- Modify the readseq.py script to make use of the sequencetools module.
- Configure PyCharm to define the src/ex10/ directory as a source 

directory.

- Run the program using files :
- '../../data/fasta/Syn_RCC307.fna' as nucleotide input file.
- '../../data/fasta/Syn_RCC307.faa' as amino acid input file.

72



 Outline : Session 2

Working With Heterogeneous Data

1. Regular Expressions: re
2. Methods for Sorting Data: sort & lambda functions
3. Storing Intermediate Results: pickle
4. Using Tabular Data : csv
5. Intermezzo : Virtual Environments
6. A Word on XLS(X) Files : openpyxl
7. Grabbing Data From the Web :  requests & json
8. Managing Configuration Files : configparser

73



74

Regular Expressions : an Overview

Regular Expressions are used to analyse and process text information :
- By searching for a specific constructs: patterns, combinations of patterns)
- By extracting the portions of text that match the patterns for later use
- By using the portions to replace portions of the original text

Examples from our fasta example file:

- Extract strain information (species, strain identifier) 
- Extract position information (start, stop, strand)
- Correct position information (replace start, stop or strand with updated 

values)

>CK_Syn_RCC307_2183:1894037-1895116:1|psbA



75

Regular Expressions : Patterns

Patterns are the building blocks for searching textual data. They are defined 
using specific syntactic elements of two types : 

- Elements to specify the nature of the pattern components (letters, digits…)
- Elements to specify how the components are organized wrt. one another 

(location in the text, number of occurrences)

Some common text-based structures that can be defined by patterns are :

- Dates :                         number - space - letters - space - number

                                                  number - slash - number- slash - number

- DNA sequences:  a series of letters taken from the set {a,t,g,c,A,T,G,C}

- Protein sequences: a series of letters taken from the amino acid codes, with 
constraints on the starting letter (usually M).

1 Jan 2018

01/01/2018

 



76

Regular Expressions : Patterns

In Python, regular expressions are made available through the re module. This 
module provides, amongst other things, a set of special syntax elements to 
define patterns. A pattern is then an ordinary string containing one or more of 
these special syntax elements.
These syntax elements allow to define constraints on 
the type of the allowed characters :

A date can then be defined with the following pattern :

. Any character

\d A digit (a character in the range 0 to 9)

\w An alphanumerical character: a to z, A to Z, a digit, an underscore

\s A space character (space or tab)

[aeiou] One of the a,e,i,o,u characters.

[^aeiou] Any character except a,e,i,o,u

1 Jan 2018 "\d\s\w\w\w\s\d\d\d\d"

01/01/2018 "\d\d/\d\d/\d\d\d\d"

In uppercase, they m
ean “anything except.”



77

Regular Expressions : Patterns

These syntax elements also allow to define constraints on how many 
occurrences of a character (or character type) are allowed  :

The date patterns can be expressed as : 

* Any number of occurrences 

? Zero or one occurrence

+ One or more occurrences

{n} Exactly n occurrences

{n,} At least n occurrences

{,m} At most m occurrences

{n,m} Between n and m occurrences

1 Jan 2018 "\d{1,2}\s\w{3}\s\d{4}"

01/01/2018 "\d{2}/\d{2}/\d{4}"



78

Regular Expressions : Patterns

The sequence patterns can be expressed as : 

- DNA : 

- Proteins :

Two special characters allow to “anchor” a pattern at either end of a text line:

To look for a date of the first example type at the beginning of a line we would 
use:

And to look for a date at the end of a line, we would use:

"[atgcATGC]+"

"[mM][ACDEFGHIKLMNOPQRSTUVWXY]+"

^ Anchors the pattern from the beginning of the line

$ Anchors the pattern at the end of the line

"^\d{1,2}\s\w{3}\s\d{4}"

"\d{1,2}\s\w{3}\s\d{4}$"



79

Regular Expressions : Patterns

Pattern elements can also be grouped using parentheses.

Hence, to look for a date of the second example type at the beginning of a line 
we would use:

Pattern grouping will allow us in Python to assign the matching groups to 
variables. More on that later.

"(\d{2}/){2}\d{4}"01/01/2018



80

Regular Expressions : Using the re module

1. Define the regular expression by using re.compile()

2. Look for the pattern in a candidate string
a. By matching the whole string

b. By looking “inside” the string

patternVar = re.compile(r"patterndef")
Denotes a string containing a regular expression.

datePattern = re.compile(r"(\d{2})/(\d{2})/(\d{4})")

matchVar = re.match(patternVar,candidateText)

dateMatch = re.match(datePattern,"01/01/2018")

matchVar = re.search(patternVar,candidateText)

dateMatch = re.search(datePattern,"01/01/2018")



81

Regular Expressions : Using the re module

3. Check if the pattern was found and use it if it was found

if matchVar is not None :
# do something useful with matchVar
matchString=matchVar.group(0)

if dateMatch is not None :
day=int(dateMatch.group(1))

Group 0 stands for the whole pattern match

Group 1 stands for the match between the first parentheses



Regular Expressions

Exercise 11

- Copy sequencetools.py and readseq.py to src/ex11
- Rename readseq.py to countseqstrand.py
- Modify the countseqstrand.py script so that it takes only one sequence 

file as argument (-s or --seqfile)
- Modify the countseqstrand.py script to make use of regular expressions 

to count the number of sequences on both strands (leading and lagging), 
knowing that the sequence identifiers have the following form :

- Run the program using the file :
- '../../data/fasta/Syn_RCC307.fna'

82

>CK_Syn_RCC307_2183:1894037-1895116:1|psbA

Strand : 1, 0 or -1



83

Regular Expressions : Tips & Tricks

Grouping Tip : groups can be named, and once matched, can be referenced by 
their name.

datePattern = re.compile(r"(?P<day>\d{2})/
(?P<month>\d{2})/
(?P<year>\d{4})")

dateMatch = re.match(datePattern,"01/01/2018")

if dateMatch is not None :
day=int(dateMatch.group('day'))



84

Regular Expressions : Tips & Tricks

Case sensitivity tip: The re compile(), search() and match() function have 
an optional flags argument. One of its values, re.IGNORECASE (or re.I) makes 
these function ignore the case of letters in the text to match.

All the following text strings match the pattern :

datePattern = re.compile(r"(?P<day>\d{2})
(?P<month>\w{3})
(?P<year>\d{4})",
re.IGNORECASE)

dateMatch = re.match(datePattern,"01 Jan 2018")

dateMatch = re.match(datePattern,"01 jan 2018")

dateMatch = re.match(datePattern,"01 JAN 2018")



85

Regular Expressions : Tips & Tricks

Text replacement tip: re proposes a sub() function allowing to substitute 
(replace) a pattern with another string using a single call.

Groups can be reused in the replacement string with a special syntax :

>>>newDate = re.sub(r"(?P<day>\d{2})/
(?P<month>\d{2})/
(?P<year>\d{4})",
r"\g<month>/)
\g<day>/)
\g<year>",
"31 01 2018")

>>>newDate
'01/31/2018'

>>>newFruit = re.sub(r"oranges",r"bananas",
"I like oranges")

>>>newFruit
'I like bananas'



Regular Expressions

Exercise 12

- Copy sequencetools.py and countseqstrand.py to src/ex12
- Rename  countseqstrand.py to countgenelength.py
- Modify the sequencetools.py module :

- to add the following descriptors to the sequence record structure : 
POSITION_MIN, POSITION_MAX, STRAND

- to add a function computeSequencePositionInfo using regular 
expressions to fill the above descriptors for a sequence record 
structure based on the contents of the sequence identifier.

- Modify the countgenelength.py script to print the size of the shortest 
and the longest genes.

- Run the program using the file :
- '../../data/fasta/Syn_RCC307.fna'

86

>CK_Syn_RCC307_2183:1894037-1895116:1|psbA

Stop positionStart position



87

Sorting: using the default sort features

Python provides a sort() function to sort lists “in-place” : it changes the order 
of the list elements. By default elements are sorted in ascending order using the 
“natural” comparison method of elements. The list elements must be of a 
homogeneous comparable type.

This is the case with scalar types:

>>> fruit=['oranges','bananas','apples']
>>> fruit.sort()
>>> fruit
['apples', 'bananas', 'oranges']
>>> numbers=[678,341,108,834]
>>> numbers.sort()
>>> numbers
[108, 341, 678, 834]



88

Sorting: using the default sort features

But lists of lists (of lists) of homogeneous comparable types can also be sorted:

When the list elements cannot be compared, an exception is thrown :

>>> basket=[['oranges',10],['apples',20], 
['bananas',2],['apples',3]]
>>> basket.sort()
>>> basket
[['apples', 3], ['apples', 20], ['bananas', 2], ['oranges', 
10]]

>>> basket=[ {'oranges' : 10}, {'apples' : 20}, 
{'bananas':2}]
>>> basket.sort()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: '<' not supported between instances of 'dict' and 
'dict'



89

Sorting: reversing the sort order

The sort order can be reversed by adding the reverse=True parameter to the 
sort() function.

>>> basket=[['oranges',10],['apples',20], 
['bananas',2],['apples',3]]
>>> basket.sort(reverse=True)
>>> basket
[['oranges', 10], ['bananas', 2], ['apples', 20], ['apples', 
3]]



90

Sorting: generating a sorted element collection

Python also provides a sorted()function. This function returns a new 
collection with ordered elements of the collection it is applied upon.

>>> fruit=['oranges','bananas','apples']
>>> sortedfruit=sorted(fruit)
>>> fruit
['oranges', 'bananas', 'apples']
>>> sortedfruit
['apples', 'bananas', 'oranges']
>>> revsortedfruit=sorted(sortedfruit,reverse=True)
>>> revsortedfruit
['oranges', 'bananas', 'apples']



91

This function can also be applied to a dictionary. It will then generate a list with 
the ordered keys of the dictionary.

>>> basket={'oranges' : 10,'apples' : 20,'bananas' : 2}
>>> sorted(basket)
['apples', 'bananas', 'oranges']

Sorting: generating a sorted element collection



92

Both sort() and sorted() allow to define which “key” to use to perform the 
sorting. A key is a function that will be applied to each element of the collection 
to be sorted prior to its comparison.

Ex 1: Ordering angles (in degrees)

>>> def angular_compare(degrees) :
...     return (degrees % 360)
...
>>> angles=[0,90,180,270,360,450,540,630,720,810,900]
>>> sorted(angles,key=angular_compare)
[0, 360, 720, 90, 450, 810, 180, 540, 900, 270, 630]

Sorting: defining the sort key



93

Ex 2: Ordering a list of dictionaries according to a dictionary key name

Ex 3: Ordering a list of lists according to a given inner element index

>>> basket=[{'fruit':'apple', 'qt' : 
20},{'fruit':'banana','qt':10},{'fruit':'orange','qt': 2}]
>>> def fruitname_compare(fruititem):
...     return fruititem['fruit']
... 
>>> sorted(basket,key=fruitname_compare)
[{'fruit': 'apple', 'qt': 20}, {'fruit': 'banana', 'qt': 10}, 
{'fruit': 'orange', 'qt': 2}]

Sorting: defining the sort key

>>> basket=[[10,'apples'],[3,'oranges'],[5,'bananas']]
>>> def fruitposition_compare(fruitelement):
...     return fruitelement[1]
... 
>>> sorted(basket,key=fruitposition_compare)
[[10, 'apples'], [5, 'bananas'], [3, 'oranges']]



94

When a (sort) function is only used once, it is cumbersome to define it as such. 
Python provides a special syntax allowing to define a function “on the fly”. 
These functions are called lambda functions, and are built as follows :

Ex. 4 : Using a lambda function to sort angles

Sorting: using lambda functions

>>> angles=[0,90,180,270,360,450,540,630,720,810,900]
>>> sorted(angles,key=lambda degrees : (degrees % 360))
[0, 360, 720, 90, 450, 810, 180, 540, 900, 270, 630]

lambda args : expression_using_arg

The variable where the 
argument(s) will be made 

available on each call

An expression using the argument(s) and 
that will be returned as the result of the 

lambda function call



95

Ex 5: Ordering a list of dictionaries according to a dictionary key name, using a 
lambda function

Ex 6: Ordering a list of lists according to a given inner element index using a 
lambda function

>>> basket=[{'fruit':'apple', 'qt' : 
20},{'fruit':'banana','qt':10},{'fruit':'orange','qt': 2}]
>>> sorted(basket,key=lambda d : d['fruit'])
[{'fruit': 'apple', 'qt': 20}, {'fruit': 'banana', 'qt': 10}, 
{'fruit': 'orange', 'qt': 2}]

Sorting: using lambda functions

>>> basket=[[10,'apples'],[3,'oranges'],[5,'bananas']]
>>> sorted(basket,key=lambda e : e[1])
[[10, 'apples'], [5, 'bananas'], [3, 'oranges']]



Sorting Data

Exercise 13

- Copy sequencetools.py and countgenelength.py to src/ex13
- Rename  countgenelength.py to sortgenes.py
- Modify the sequencetools.py module :

- to add a function sortSequencesByLength taking the sequence 
information dictionary as argument and returning the list of sequence 
identifiers ordered by ascending sequence length. Add a second 
optional argument allowing to define the sort order (ascending or 
descending).

- Modify the sortgenes.py script to display the first and last sequence ids 
and lengths after sorting the genes.

- Run the program using the file : '../../data/fasta/Syn_RCC307.fna'

- Check that the optional sort order argument works as expected.

96



97

When loading and parsing the original input data is expensive 
(time-consuming), Python offers an easy way to store data structures in a 
“pickle” file. Data stored in such pickle files can be rapidly loaded by other 
Python programs, or by subsequent runs of the same program.

To store a data structure in a pickle file, the pickle.dump() function is used as 
follows :

Managing intermediate results with pickle

import pickle
…
with open('mydata.pickle','wb') as pfile :

pickle.dump(mydatastructure,pfile)

Open the file for writing (‘w’) 
data in binary (‘b’) format.

The variable to store in the pickle file.



98

To load a data structure previously dumped in a pickle file, the pickle.load() 
function is used as follows :

import pickle
…
with open('mydata.pickle','rb') as pfile :

mydatastructure=pickle.load(pfile)

Open the file for reading (‘r’) 
data in binary (‘b’) format.

The variable to fill with the contents of the pickle file.

Managing intermediate results with pickle



Storing intermediate results

Exercise 14
- Copy sequencetools.py and sortgenes.py to src/ex14
- Modify the sequencetools.py module :

- to add a function saveSequenceIntoPickleFile taking a filename 
and the sequence information dictionary as arguments and storing the 
sequence information dictionary in pickle format in the file

- to add a function loadSequenceFromPickleFile taking a filename as 
argument and returning the sequence information dictionary after 
loading it from the pickle file

- Modify the sortgenes.py script to add an option  (-p or --pickle) followed 
by a filename :

- when both options -s and -p are present, store the sequence 
information dictionary in a pickle file whose name is given

- when -p is present without -s, load the sequence information dictionary 
from the pickle file whose name is given

- use the verbose mode to print which pickle function is used.
 

- Run the program using the file : 
'../../data/fasta/cyanorak_complete.fna'

99



100

Data is often stored in tabular data : each line (or record) contains a fixed 
number of columns separated by a well-defined character (most frequently a 
semi-colon or a tab character). The first line of the file may be a header line 
containing the column labels.

The csv module provides all the functionality to read and write tabular data. 

When loading data, it reads one line at a time, and returns the parsed result 
either as a list or as a dictionary.

Ex. 1:  Reading tabular data from a tab-delimited file, one list per line

Using tabular data with csv

import csv
…
with open('mydata.tsv') as csvfile :

reader=csv.reader(csvfile,delimiter='\t'))
for line in reader :

print(", ".join(line))

Optional, comma by default.

Each element of line contains the value of one column



101

Ex. 2:  Reading tabular data from a tab-delimited file, one dictionary per line. 
The first line of the file contains the column headers. 

Ex. 3: Reading tabular data from a tab-delimited file, one dictionary per line, 
explicitly defining the column headers.

Using tabular data with csv

import csv
…
with open('mydata.tsv') as csvfile :

reader=csv.DictReader(csvfile,delimiter='\t'))
for line in reader :

print(", ".join(line.values()))

import csv
…
with open('mydata.tsv') as csvfile :
reader=csv.DictReader(csvfile,fieldnames=['lastname','firstna
me','age'],delimiter='\t'))

for line in reader :
print(", ".join(line.values()))

A dictionary where the keys are the column values of the first line in the file.

A dictionary where the keys are the column values of the fieldnames argument.



102

For storing data, the writerows() method allows to write a whole list of lines 
at once. 
Lines can also be written one at a time with writerow()

Ex. 4:  Writing tabular data into a comma delimited file, one list per line. 

Using tabular data with csv

import csv
…
fruit=[['apples',10],['bananas',3],['oranges',5]]
with open('fruit.csv','w') as csvfile :

writer=csv.writer(csvfile)
writer.writerows(fruit)



103

Ex. 5: Writing tabular data into a comma delimited file, one dictionary per line, 
using a subset of the keys.

Ex. 6: Writing tabular data into a comma delimited file, one dictionary per line, 
using all the keys.

Using tabular data with csv

import csv
…
fruit=[{'name':'apples','qt' : 10,'price':4.5},

{'name':'oranges','qt' : 5,'price':3.2},
{'name':'bananas','qt' : 3,'price':2.0}]

with open('fruit.csv') as csvfile :
writer=csv.DictWriter(csvfile,fieldnames=['name','qt']))
writer.writeheader()
writer.writerows(fruit)

(…)
with open('fruit.csv') as csvfile :

writer=csv.DictWriter(csvfile,fieldnames=fruit[0].keys()))
writer.writeheader()
writer.writerows(fruit)



Working with tabular data

Exercise 15
- Create a new directory src/ex15
- Write a module called inventairestools.py containing :

- a function called loadBiotopes taking a filename as argument and 
using a csv.DictReader to load the contents of the file which is 
supposed to contain a header line, and columns separated by a tab 
character ('\t')

- the function returns a list of dictionaries, one for each data line of the 
file.

- Write a script called loadinv.py :
- processing the command line arguments (-b or --biotopes followed 

by a filename)
- calling the loadBiotopes function of inventairestools.py
- displaying the contents of the first data line of the file.

 
- Run the program using the file : 

'../../data/tabular/inv_biotopes.tsv'

104



Working with tabular data

Exercise 16
- Look at the following data files in the data/tabular directory :

- inv_observations.tsv, inv_nomsespeces.tsv, 
inv_especes.tsv and inv_biotopes.tsv

- Each table contains an id column.
- The table in file inv_observations.tsv contains columns with ids 

referencing the entries of the other tables (id_biotope, 
id_nomespece, id_espece).

- The goal of the exercise is to generate a CSV file with a line for each 
observation containing a summary of the related data as follows :

105

id date genre espece aphiaid eunis biotope

from inv_observations.tsv

from inv_nomsespeces.tsv

from inv_especes.tsv

from inv_biotopes.tsv



Working with tabular data

Exercise 16
- Copy both inventairestools.py and loadinv.py to a new directory 

src/ex16
- Rename loadinv.py to summarizeobs.py 
- Extend the  inventairestools.py module to add the new functions :

- loadSpeciesNames, loadObservations, loadSpecies taking a 
filename as argument and using a csv.DictReader to load the 
contents of a file which is supposed to contain a header line, and 
columns separated by a tab character ('\t')

- the function returns a list of dictionaries, one for each data line of the 
file.

- try to minimize cutting/pasting code, write functions instead
- Modify the summarizeobs.py script to :

- process the command line arguments (-b or --biotopes, -s or 
--species, -n or --speciesnames,-o or --observations,-r or 
--resultfile)

- call the loadXXX functions of inventairestools.py
- store the table with the summary in a resultfile (you can use 

'/tmp/observations.csv' for ex.)
- Run the program with the inv_* data files.

106



107

The Python interpreter comes with a load of standard modules. However, 
sometimes it is necessary to install additional modules. Their installation in the 
system (shared) Python directories is not always possible or recommended. 

Enter the Python virtual environments. These allow the installation in a user 
directory of an instance of the Python interpreter and its standard modules. 
This instance can then be activated making it the default Python installation for 
a work session. Once activated, module installations can be carried out in this 
virtual environment by the user who created the virtual environment in the first 
place.

This is a very cheap operation. It is thus frequent to create one instance of a 
virtual environment for every application. This allows to tailor which modules or 
even which module versions are available to applications.

Virtual Environments



108

PyCharm provides all the functionalities to create virtual environments and to 
manage module installations (or removals) in these environments.

Virtual Environments with PyCharm

http://www.youtube.com/watch?v=4v1bLNItxBM
http://www.youtube.com/watch?v=P51uGaknA6s


109

Python installation provide a virtualenv command. It takes an argument with 
a (not already existing) directory name where the virtual environment will be 
created.
It supports several options, most notably -p followed by the Python interpreter 
that is to be used in the virtual environment.

Once the virtual environment is created, it has to be activated with the following 
command :

The prompt will be prefixed with the name of the virtual environment indicating 
that activation was successful.

It then becomes possible to install new modules in the environment by using 
the pip install command

Virtual Environments Using a Terminal

[foobar] virtualenv -p python3 myvenv

[foobar] . ./myvenv/bin/activate

(myvenv)[foobar] pip install modulename



110

Screencast Time Again!

Virtual Environments Using a Terminal

http://www.youtube.com/watch?v=J1UywjlzBl8


Virtual Environments

Exercise 17

- With PyCharm :
- create a virtual environment, based on the python3 interpreter, and 

with the name abimsenv
- install the openpyxl module in this virtual environment
- check that the module can be imported without errors

- For those having a little Linux know-how:
- perform the same operations in your project directory (remember the  

cdprojet command?)

 

111



112

In some cases, it is necessary to work with Excel (XLSX) files instead of 
text-based tabular data :

- When the Excel workbook contains multiple worksheets
- When the content of the table relies on formulas
- When it is necessary to keep the original data format (such as dates or 

times)
Python provides the openpyxl module to handle these Excel files.
Loading an Excel file is done as follows:

It becomes possible to access individual worksheets:

Manipulating Excel (XLSX) files

import openpyxl
…
workbook=openpyxl.load_workbook('filename.xlsx')

import openpyxl
…
activeworksheet=workbook.active
...
namedworksheet=workbook['sheetname']

get the active worksheet

get the worksheet with a given name

allsheetnames=workbook.sheetnames get a list with all the sheet names



113

Individual cells can be accessed using an indexed notation, and their value can 
be read and/or changed with the value attribute (more on that later) :

Looping over rows can be done using the iter_rows() function. Each row 
returned by the function and then be used to loop over the cells :

The limits of the area of the worksheet that contains data can be obtained with :

Manipulating Excel files

a1cell=worksheet['A1']
a1value=a1cell.value
a1cell.value='Foobar'

a1cell is a variable describing the cell, not only its contents

for row in worksheet.iter_rows():
for cell in row :

cell.value=re.sub('UPMC','Sorb. Univ.',cell.value)

worksheet.max_row
worksheet.max_column



114

A word of caution : when using the indexed notation, non-existing cells are 
automatically created. For ex. :

Saving a modified workbook is done with the save() function:

The openpyxl module provides a lot more features to handle formulas, styles, 
validation etc.. which are beyond the scope if this introduction. For more 
information :

http://openpyxl.readthedocs.io/en/default/index.html

Manipulating Excel files

>>>(worksheet.max_row,worksheet.max_column)
(15,7)
>>>worksheet['ZZ2048'].value='Hello, World'
>>>(worksheet.max_row,worksheet.max_column)
(2048,702)

workbook.save('myworkbook.xlsx')

http://openpyxl.readthedocs.io/en/default/index.html


115

With the for instruction, the loop block is executed once for each element of 
the collection. 
Sometimes, it might be more efficient to directly “jump” to the next loop 
element without processing the remainder of the loop block. This can be done 
using the continue instruction :

It might sometimes be useful to finish looping before all collection elements 
have been processed. In this case, the break instruction can be used.

More loop controls

for number in numbercollection :
if number % 2 == 1 :

continue
# Process only even numbers in the remainder of the block.

for number in orderednumbercollection :
if number >= thresh :

break
# Process number in the remainder of the block.

# Code following the for block.

 jump to next element of 
collection

jump right after the for block

 elements in 
orderednumbercollection are 

supposed to be ordered



116

Sometimes, we need to carry out a series of steps (a block of code) repeatedly 
while a condition is satisfied. Python provides the while instruction to do this:

Almost always, expression contains terms whose value is modified inside the 
while block, potentially changing the outcome of the evaluation of 
expression.

More loop controls : using while

while expression :
# Process the following block while
# expression evaluates to True.

basket={'total' : 0, 'contents' : []}
while basket['total'] <= 100.0 :

someItem=selectItemFromStore()
basket['contents'].append(someItem)
basket['total']=basket['total']+someItem['price']

# Code following the while block

whenever total exceeds 100, 
execution resumes after the while 
block



117

There is however a Python idiom relying on a perpetual while and using the 
break instruction to end the while block :

More loop controls : using while

while True :
outcome = perform_some_sophisticated_calculation()
if outcome == 'unexpected' :

break
# Code following the while block



Working with tabular data

Exercise 18
- Create a new directory src/ex18
- Write a script called extractaphiaids.py using openpyxl and csv.
- Taking the following arguments :

- -i or --infile followed by an XLSX filename
- -o or --outfile followed by a CSV filename
- -w or --worksheet followed by the name  of the worksheet in the 

input file containing the data
- -a or --aphiaid followed by the name (letter) of the column in the 

input file containing the AphiaIds
- -g or --genus followed by the name (letter) of the column in the input 

file containing the genus
- -s or --species followed by the name (letter) of the column in the 

input file containing the species
- Generating an output CSV file with the following columns extracted from 

the XLSX file : genus, species, aphiaid.
- Every aphiaId present in the XLSX file must appear only once in the CSV 

file.
- Run the program using ../../data/xlsx/observationsummaries.xlsx

118



More and more, repositories allow direct access to datasets. If retrieving a small 
number of datasets by hand is possible, it quickly becomes important to be able 
to download large collections of files.

In order to do so, two key issues need to be addressed:

1. How did the repository design the dataset identifiers allowing each of them 
to have a unique reference ?

In technical terms: how to build the URL (a.k.a “web address”) referencing 
datasets of interest.

2. What is the format of the data that will be downloaded ?

It may be in tabular format, or other more structured formats (XML, JSON), 
or even plain HTML.

The download protocol (HTTP, FTP or other) is a minor issue because it is 
nicely handled by the various Python modules.

119

Fetching data from the Web



Each data repository has its own way of defining URLs for datasets. Methods 
for building these URLs are most of the time documented on the data supplier’s 
website: search for API, or better REST API.

However, there always is:
- A constant part including the name of the server and the path to the “parent 

directory” where the datasets are made available :

http://data.myrepository.org/rest/datasets/

- A variable part, appended to the constant part, including an identifier that 
uniquely references a given dataset :

http://data.myrepository.org/rest/datasets/sequences/Syn_RCC307

http://data.myrepository.org/rest/datasets/taxons/Syn_RCC307

- There may also be optional parameters for specifying a data format to 
return:
http://data.myrepository.org/rest/datasets/sequences/Syn_RCC307?fmt=xml

120

Fetching data from the Web : URLs

http://data.myrepository.org/rest/datasets
http://data.myrepository.org/rest/datasets
http://data.myrepository.org/rest/datasets
http://data.myrepository.org/rest/datasets


Ex. 1: Retrieving taxon description records from WoRMS.

1. The base address is : 
http://www.marinespecies.org/rest/

(BTW, this is also the page where the documentation is found)

2. It provides a method to retrieve taxon description record knowing an 
AphiaID :

/AphiaRecordByAphiaID/{ID}

3. The method contains a parameter between curly braces {ID} that has to be 
replaced by an actual value

(There is no mention of formatting options)

The complete URL to retrieve a taxon description record for the taxon identified 
by AphiaID 131173, is thus :

http://www.marinespecies.org/rest/AphiaRecordByAphiaID/131173

121

Fetching data from the Web : URLs

http://www.marinespecies.org/rest/
http://www.marinespecies.org/rest/
http://www.marinespecies.org/rest/
http://www.marinespecies.org/rest/


Ex. 2: Retrieving sequence information from EBI/ENA

The documentation on programmatic access for data retrieval is available at:
https://www.ebi.ac.uk/ena/browse/data-retrieval-rest

1. The base address is : 
https://www.ebi.ac.uk/ena/data/view

2. Any ENA identifier or identifiers can be appended to the base address:
/{ID1,ID2,ID3}

3. ENA allows to specify an optional format parameter to choose how the 
return the data (xml,text,fasta) :

?display=format

The complete URL to retrieve the ENA record for the petB gene in WH8102, in 
text format (EMBL) is thus: 

https://www.ebi.ac.uk/ena/data/view/AAC05630?display=text

122

Fetching data from the Web : URLs

https://www.ebi.ac.uk/ena/browse/data-retrieval-rest
https://www.ebi.ac.uk/ena/browse/data-retrieval-rest
http://www.marinespecies.org/rest/
http://www.marinespecies.org/rest/
https://www.ebi.ac.uk/ena/browse/data-retrieval-rest


Python provides a requests module with the most user (programmer?) friendly 
functions to retrieve data from the web.

For a basic usage, requests includes a get() function where the only 
argument is the URL to use for data retrieval. This function returns an object (an 
enhanced data structure, more on objects later on) containing both the retrieved 
data itself and some metadata (the status of the request, the encoding of the 
returned data, the headers sent back from the server…).

The actual data can be accessed in various formats using one of the attributes 
or methods of the object : raw, text, json()

123

Fetching data from the Web  with requests

>>>import requests
…
>>>r=requests.get('https://www.ebi.ac.uk/ena/data/view/AAC05630&display=fasta')
>>>r.text
'>ENA|AAC05630|AAC05630.1 Synechococcus sp. WH 8103 partial cytochrome b6 
\nTACGTGTTCCGGGTCTACCTCACCGGTGGTTTCAAGCGTCCCCGTGAGCTCACCTGGGTC\nACCGGCGTGACCATGGC
CGTGATCACAGTTTCCTTCGGTGTCACCGGTTACTCCCTGCCC\nTGGGACCAGGTTGGTTATTGGGCCGTCAAGATTGTT
TCCGGCGTCCCAGCAGCCATCCCA\nGTTGTGGGTGACTTCATGGTGGAGCTGCTCCGCGGTGGCGAAAGTGTCGGTCAGT
CCACA\nCTCACTCGCTTCTACAGCCTCCACACCTTTGTGATGCCATGGCTGCTCGCCGTATTCATG\nCTCATGCACTTC
CTGATGATTCGGAAGCAGGGCATTTCTGGTCCCTTGTGA\n'

https://www.ebi.ac.uk/ena/data/view/AAC05630&display=fasta


Among the variety of formats proposed by data suppliers, JSON is one of the 
most frequently used (with XML). It is a lightweight text based format suited for 
the representing structured data that can be described by dictionaries, lists and 
scalar values. Data descriptions in JSON look very similar to their Python 
counterparts:

124

Fetching data from the Web : JSON format

{ "id" : 12345,
  "records" : [ 

{ "name" : "Doe",
 "firstname" : "Jane",
 "age" : 25,
 "hired" : true,
 "location" : "Cupertino",
},
{ "name" : "Smith",
 "firstname" : "Jane",
 "age" : 25,
 "hired" : false,
 "location" : null,
}

]}

di
ct

io
na

ry

lis
t

string

number

boolean values

empty value : None



The json module allows conversion between text-based JSON data structures 
and Python data structures. It is used in pretty much the same way as the 
pickle module.

Ex. 1: Writing a Python data structure into a JSON text file

Ex. 2: Loading a Python data structure from a JSON text file

Fetching data from the Web : JSON format

import json
…
fruit=[...]
with open('fruit.json','w') as jsonfile :

json.dump(fruit,jsonfile)

import json
…
fruit=[...]
with open('fruit.json') as jsonfile :

fruit=json.load(jsonfile)



The json module also handles coding/decoding data from or into text strings. 
This makes it unnecessary to use temporary files when retrieving JSON data 
from the web destined to be stored in Python variables.

Ex. 3: Converting a Python data structure into a JSON text string.

Ex. 2: Building a Python data structure from a JSON text string

Fetching data from the Web : JSON format

import json
…
fruit=[...]
jsonFruit=json.dumps(fruit)

import json
…
jsonFruit='[{"kind":"apples","qt":10},...]'
fruit=json.loads(jsonfile)



Retrieving Data from the Web

Exercise 19

- If needed, add the requests module to your virtual environment.

- Create a new directory src/ex19
- Write a script called gettaxinfo.py using requests, json  (and csv.).
- Taking the following arguments :

- -i or --infile followed by a CSV  filename, with three columns: 
genus,species,aphiaid

- -o or --outfile followed by a CSV filename

- Retrieving an AphiaIdRecord from the WoRMS data repository, and storing 
classification descriptors included in the record: 
kingdom,phylum,class,order,family,genus,scientificname,authority.

-  Generating an output CSV file with the AphiaID and the previous columns.

- Run the program using ../../data/tabular/species_aphiaids.csv

127



For configuring scripts with complex arguments and/or options, using the 
command-line quickly becomes unwieldy.
In those cases, the configuration is better stored in a file, which is then given as 
argument to the script.
Various configuration file formats exist, but only a few are both human-readable 
(and editable) and easily parsable in a program.
One of these formats has been popularized by Windows INI files. These are text 
files divided in named sections wherein basic assignments can be defined.

Using configparser to load configurations

[firstsectionname]
parameter name=parameter value
boolparam=yes
[secondsectionname]
#comments are also allowed
other parameter name : other parameter value
empty parameter=
other empty parameter
multi line parameter : a lot of text spanning
   a block of lines

separators

co
m

m
en

t 

Indentation for multi-line values

section name
delimiters



The configuration format even allows simple variable interpolations to achieve 
more flexible configurations : a base parameter is defined once, and other 
parameters depending on the base parameter can reference the latter. The base 
parameter is the surrounded by an opening %( and a closing )s

Using configparser to load configurations

[customizablebynoob]
basedirectory=/home/user/applications/superapp

[customizablebyexpert]
inputdir=%(basedirectory)s/infiles
outputdir=%(basedirectory)s/results
tempdir=%(basedirectory)s/tmp

ordinary definitio
n

References to an 
existing definition



In Python programs, these kind of configuration files can be easily read with the 
configparser module. It stores the contents of the file as a dictionary of 
dictionaries. The first key being the section name and the second key the 
parameter name.

The names of the sections can also be provided with the sections() function

Using configparser to load configurations

>>>import configparser
>>>configparser=configparser.ConfigParser()
>>>configparser.read('config.ini')
>>>configparser['firstsectionname']['parameter name']
'parameter value'

Section name Parameter name

>>>import configparser
>>>configparser=configparser.ConfigParser()
>>>configparser.read('config.ini')
>>>configparser.sections()
['firstsectionname','secondsectionname']



By default, all parameter values are strings. If needed, they have to be explicitly 
converted to other scalar types. However, the module comes with a function, 
getboolean(), returning a boolean value after parsing a string whose values 
can be: ‘yes’,’no’,’on’,’off’,’true’,’false’,’1’ or ‘0’.

Finally, a variable of “type” configparser can be written to a file with the 
write() method.

Using configparser to load configurations

>>>import configparser
>>>configparser=configparser.ConfigParser()
>>>configparser.read('config.ini')
>>>configparser['firstsectionname'].getboolean('boolparam')
True

>>>import configparser
>>>configparser=configparser.ConfigParser()
>>>configparser['section one']={'param one':'value one',

'param two':'value two'}
>>>configparser.write('config.ini')



Using configuration files

Exercise 20
- Create a new directory src/ex20
- Copy the gettaxinfo.py
- Enhance the script to make it capable of reading a configuration file with 

the following section :
- outfile, declaring a series of boolean parameters : 

kingdom,phylum,class,order,family,genus
When set to one of the possible truth values, the column will be 
generated in the output file otherwise it will be omitted.

- Add the -c (--configfile) option to the script loading the configuration 
from a file

- Add a -w (--writeconfig) option to the script writing the configuration to 
the given filename

- Define a default configuration dictionary in the script.
- Run the program using ../../data/tabular/species_aphiaids.csv 

once to write the configuration file
- Edit the configuration file to change the columns in the output file and 

rerun the program with the configuration file as argument.

132


