
This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International
License. [link]

Managing Data
with Python

Session 202

1

June 2018

M. HOEBEKE
Ph. BORDRON
L. GUÉGUEN

G. LE CORGUILLÉ

http://creativecommons.org/licenses/by-nc-sa/4.0/

Outline : Session 2

Using Domain Specific Modules

1. The BioPython Toolkit
2. Processing Sequence Data
3. Running BLAST and Processing Results
4. Accessing Remote Resources
5. Working with Graph Structures
6. Putting it all Together

2

Outline : Session 2

Using Domain Specific Modules

1. The BioPython Toolkit
2. Processing Sequence Data
3. Running BLAST and Processing Results
4. Accessing Remote Resources
5. Working with Graph Structures
6. Putting it all Together

3

As the Python-savvy bioinformatics community gained momentum, the will to
build a BioPerl-like toolkit in Python became prevalent.The first announcement
of the availability of a BioPython set of modules goes back to 2000. The latest
release is biopython-1.71 dating from April 2017.

The project’s entry point is:
http://www.biopython.org

The bulk of BioPython’s features cover biological sequences:
- Reading and writing sequences using standard file formats
- Manipulating sequence annotations
- Parsing output from ubiquitous bioinformatics tools (Blast, clustalw)
- Interacting with remote servers (NCBI-Blast, UniProt, ProSite)

But it also provides tools to work with protein 3D structures or with
phylogenetics trees. Clustering functions are provided as well, but it remains to
be determined where they fit in wrt to dedicated clustering packages like
scikit-learn.

Unsurprisingly, BioPython is heavily object-oriented.

The biopython toolkit

http://www.biopython.org

Outline : Session 2

Using Domain Specific Modules

1. The BioPython Toolkit
2. Processing Sequence Data
3. Running BLAST and Processing Results
4. Accessing Remote Resources
5. Working with Graph Structures
6. Putting it all Together

5

Reading sequences in BioPython relies on parse() method of the SeqIO
module, which needs two arguments: a filename with the sequence date, and a
format name.
The complete list of recognized formats and their name to use in BioPython is
available on the Wiki dedicated to SeqIO:

http://biopython.org/wiki/SeqIO

Most frequently used format identifiers for sequences are: fasta, genbank (or
gb), embl, swiss. FastQ sequence files are also supported in various dialects:
fastq (or fastq-sanger), fastq-solexa, fastq-illumina. GFF is not yet part of the
BioPython release, more on this later.

The parse() method will return an iterator to loop over each entry in the file.
Entries are SeqRecord objects.

The biopython toolkit : reading sequences

import Bio.SeqIO
(…)
with open('mysequencedata.faa') as seqfile :

for record in Bio.SeqIO.parse(seqfile,'fasta'):
print(record.id)

http://biopython.org/wiki/SeqIO

The Bio.SeqRecord.SeqRecord class is *the* class for manipulating sequence
objects. Its main attributes are :

- SeqRecord.id : the sequence identifier (a string)

- SeqRecord.seq : the actual sequence (a Bio.Seq.Seq object)

- SeqRecord.annotations : the sequence annotations (a Python dictionary,
whose values are mainly strings)

- SeqRecord.features: the sequence features (a list of
Bio.SeqFeature.SeqFeature objects)

The biopython toolkit : SeqRecord objects

import Bio.SeqIO
(…)
for record in Bio.SeqIO.parse('mysequencedata.faa','fasta'):

print(record.id)

More on these later

The Bio.Seq.Seq holds the actual sequence, as well as information about the
sequence alphabet.
Moreover, it provides methods to extract sequence portions or to compute the
reverse or reverse complement of a sequence. Depending on the nature of the
sequence, translation or reverse transcription functions can also be used.
Finally, ungapped version of sequences can also be built.

The biopython toolkit : Seq objects

import Bio.SeqIO
(…)
for record in Bio.SeqIO.parse('mysequencedata.faa','fasta'):

seq=record.seq
seqslice=seq[start:end]

revseqslice=seqslice.reverse_complement()

Use array notation to extract sequence slice in a new
Seq object

Build another Seq object by reverse complementing
the already extracted slice.

Bio.Seq.Seq instances can also be built from scratch. The constructor method
takes as arguments:

- A string with the sequence’s letters
- The name of the alphabet necessary to define which type of sequence the

object belongs to.

The most frequently used alphabets are :
- Bio.Alphabet.ProteinAlphabet
- Bio.Alphabet.DNAAlphabet
- Bio.Alphabet.RNAAlphabet

The module also provides for degenerate or ambiguous alphabets.

Ex.: Building a new protein sequence.

The biopython toolkit : Seq objects

import Bio.Seq.Seq
import Bio.Alphabet
(…)
newseq=Bio.Seq.Seq('ZZREZRLVLVPERLPSQSD',

Bio.Alphabet.ProteinAlphabet())

Using biopython in a custom module

Exercise 0

- Create a new virtual environment called biopythonvenv (based on Python
3.6)

- Install the biopython package in this virtual environment.

- Change your project settings in order to use this virtualenvironment
instead of the previous one

10

Using biopython in a custom module

Exercise 8

- Create a new directory src/ex208
- Create a new file fastadataextractor.py defining a class

FastaDataExtractor with :
- A parseFile method parsing a (multi-)fasta file.
- A getAllFastaIds method returning the alphabetically ordered list of

identifiers read from the file.

- Use BioPython for reading fasta files.

- Create a new file testfastadataextractor.py defining a test case for the
FastaDataExtractor.getAllFastaIds method.

- Run the tests using ../../data/fasta/cyanorak_complete.faa
(containing 35,993 sequences).

11

Using biopython in a custom module

Exercise 9

- Copy the contents of directory src/ex208 in directory src/ex209
- Enhance the fastadataextractor.py with method :

- getSequenceWithId(self,seqId,minpos,maxpos), returning (if seqId is a
valid identifier), the sequence slice between minpos and maxpos. If
either minpos or maxpos are outside the sequence boundaries, an
IndexError will be raised.

- Enhance the testfastadataextractor.py methods testing the
getSequenceWithId method :

- testGetSequenceWithIdWholeSequence for returning a whole sequence
(the length of the first sequence should be 386)

- testGetSequenceWithIdSlice for returning a portion of a sequence (with
valid positions)

- testGetSequenceWithIdOutsideBoundaries for returning a portion of a
sequence (with invalid positions)

- Run the tests using ../../data/fasta/cyanorak_complete.faa
(containing 35,993 sequences).

12

Properties of sequence portions can be described through features. Not to be
confused with annotations. The latter are pieces of informations related to the
whole sequence (source organism, accession number, bibliographical
references).

...

The biopython toolkit : SeqFeature objects

Fea
ture

typ
e

Feature
location

Qualifier
Qualifier value(s)

Annotations

In BioPython, a SeqRecord stores features as a list of SeqFeature objects.

Each SeqFeature has a type and a location (start and end position, strand)
and a dictionary of qualifiers. Each qualifier comes with a list of values.
This is necessary because for a single feature, a qualifier may appear multiple
times (the ‘note’ qualifier for instance).

The biopython toolkit : SeqFeature objects

import Bio.SeqIO
...
for record in Bio.SeqIO.parse('Syn_RCC307.gbk','genbank'):

firstfeature=record.features[0]
print(firstfeature.type)
print(firstfeature.location)
qualifiers=firstfeature.qualifiers
print(qualifiers['organism'][0])

source
[0:2224914](+)
Synechococcus sp. RCC307

In GenBank file
s, th

e firs
t fe

ature is

 often the ‘source’ fe
ature

The two most important classes to describe feature locations are
FeatureLocation and CompoundFeatureLocation.

The former represents a continuous stretch of a sequence between a start and
an end position on one of the strands.

Warning : locations are indexed “à la” Python slices [0:max not included]
The latter can be used to store a discontinuous series of FeatureLocation
objects (which is needed for instance to describe exons).

For location descriptions, regardless of the strand, the start attribute always
stores the leftmost position and the end attribute always the rightmost.

The biopython toolkit : FeatureLocation objects

CompoundLocation 1
[s3,e4](-)

FeatureLocation 3
[s3,e3](-)

FeatureLocation 4
[s4,e4](-)

FeatureLocation 2
[s2,e2](-)

FeatureLocation 1
[s1,e1](+)

s1 e1 s2 e2 e3 e4s3 s4

The biopython toolkit: Class & data structure summary

SeqRecord

id

sequence

annotations

features[]

SeqFeature

type

strand

location

qualifiers

Seq

[:]

alphabet

FeatureLocation

start

end

strand

dictionary

dictionary

CompoundFeatureLocation

start

end

strand

Alphabet

1 : leading
-1 : lagging

0 : unknown
None : N/A

Writing sequences is a matter of calling the write() method of the Bio.SeqIO
module. The arguments of write() are:

- A list of SeqRecords
- A filename or an already opened file variable
- A string specifying the file format.

BioPython also provides a convenience method to convert files from one format
to another :

The biopython toolkit : writing sequences

import Bio.SeqIO
(…)
records=...
with open('mysequencedata.faa','w') as seqoutfile :

Bio.SeqIO.write(records,seqoutfile,'fasta')

import Bio.SeqIO
(…)
Bio.SeqIO.write('mysequencedata.gbk','genbank',

'mysequencedata.faa','fasta')

Using biopython in a custom module

Exercise 10

- Create a new directory src/ex210
- Create a new file genbankdataextractor.py defining a class

GenbankDataExtractor with :
- A parseFile method parsing a (multi-)GenBank file.
- A getFeaturesOfType(self,ftype,strand=None) method returning the

ordered list of features whose type matches the ftype argument. If a
strand argument is given, the set of returned features will be limited to
those located on the strand.

- Use BioPython for reading genbank files.

- Create a new file testgenbankdataextractor.py defining a test case for
the GenBankDataExtractor.getFeaturesOfType method :

- A first test returning all the features of type ‘gene’
- A second test returning all the features of type ‘CDS’ on the leading

strand.

- Run the tests using ../../data/genbank/Syn_RCC307.gbk (containg
2,583 genes and 1,287 CDS on the leading strand).

18

Using biopython in a custom module

Exercise 11

- Copy the contents of directory src/ex210 in directory src/ex211
- Enhance the genbankdataextractor.py

- Add a qualifiers attribute and accessors to your feature class
- Add method getFeaturesWithQualifier(self, qualifierName=None,

qualifierValue=None), to the data extractor class, returning a list
containing the features having qualifier as one of their qualifiers. If
value is given, it must be one of the qualifier values.

- Enhance the testgenbankdataextractor.py methods testing the
getFeaturesWithQualifier method :

- testGetFeaturesWithQualifier with qualifier name ‘locus_tag’ and
qualifier value ‘SynRCC307_2134’, which sould return two features.

- testGetFeaturesWithQualifierHavingValue with qualifier value
‘GOA:A5GVX9’, which sould return a single feature of type CDS and
positions 1842137 and 1842866.

- Run the tests using ../../data/genbank/Syn_RCC307.gbk

19

The GFF file format is not yet included in the official BioPython release.
However, one of the BioPython core developers has developed a GFF-dedicated
module which is available separately.

The project’s page is:
http://biopython.org/wiki/GFF_Parsing

Parsing a GFF file can be done using the same method as for other formats:

The biopython toolkit : Using GFF files

import BCBio.GFF
(…)
with open('myannotations.gff') as gffFile :

for record in BCBio.GFF.parse(gffFile):
print(record.id)

http://biopython.org/wiki/GFF_Parsing

Parsing can be fine-tuned in several ways to avoid loading a complete GFF file
at once.

1. Limiting the set of features using a dictionary to define the identifiers/types
of interest.

The recognized dictionary keys are:
- 'gff_id': the record identifier
- 'gff_source': the source description (second column)
- 'gff_type': the feature type (third column)
- 'gff_source_type': a combination (tuple) of source and type.

Dictionary values are lists of strings (or tuples with two strings)

The biopython toolkit : Using GFF files

import BCBio.GFF
(…)
annotations={'gff_id': ['contig_1'],'gff_type' : ['CDS'],

'gff_source_type' : [('Chromosome','CDS')]}
with open('myannotations.gff') as gffFile :

for record in BCBio.GFF.parse(gffFile,limit_info=annotations):
print(record.id)

2. Working with chunks of lines.

When specifying an additional parameter target_lines with a numerical
value, the parser will process the file in blocks while preserving the GFF record
structure : a record will not be loaded partially.

The biopython toolkit : Using GFF files

import BCBio.GFF
(…)
with open('myannotations.gff') as gffFile :

for record in BCBio.GFF.parse(gffFile,target_lines=2000):
print(record.id)

As GFF files contain only sequence annotations and no sequence, the GFF
modules provides a way to associate a sequence to a GFF entry in order to have
a complete SeqRecord.
To achieve this, it is necessary to build a dictionary from one or more
SeqRecord objects with the Bio.SeqIO.to_dict() function. This dictionary
can then be used as value for an additional argument for the parse() function.

The biopython toolkit : Using GFF files

import Bio.SeqIO
import BCBio.GFF
(…)

fastaseqdict=Bio.SeqIO.to_dict(Bio.SeqIO.parse('seq.faa','fasta')):

with open('myannotations.gff') as gffFile :
for record in BCBio.GFF.parse(gffFile,base_dict=fastaseqdict):

print(record.id)

It is also possible to save SeqRecord objects in GFF files using the write()
function.

The biopython toolkit : Using GFF files

import BCBio.GFF
(…)

with open('myannotations.gff','w') as gffFile :
BCBio.GFF.write(mySeqRecord,gffFile)

Outline : Session 2

Using Domain Specific Modules

1. The BioPython Toolkit
2. Processing Sequence Data
3. Running BLAST and Processing Results
4. Accessing Remote Resources
5. Working with Graph Structures
6. Putting it all Together

25

BioPython is capable of running BLAST both locally and remotely at NCBI.

To run BLAST locally, you need :
- The blast programs (blastn, blastp, blastall…)
- One or more databases formatted with makeblastdb
- Your candidate sequence(s)
-

The BioPython local blast wrapper is available in the Bio.Blast.Applications
module. There is a wrapper for the main BLAST types :

- NcbiblastpCommandLine,
- NcbiblastnCommandLine,
- NcbiblastxCommandLine,
- NcbipsiplastCommandLine

The biopython toolkit : running BLAST

from Bio.Blast.Applications import NcbiblastpCommandline

commandLine=NcbiblastpCommandline(query='file.fasta',
db='mydb',
outfmt=5,
out='result.xml')

stdout,stderr=commandLine()

Weird syntax, granted !

query sequence file

sequence databaseresult format

Result file

The specific type of BLAST program we want to run

BioPython is capable of running BLAST both locally and remotely at NCBI.

To run BLAST remotely, you need :
- The name of the blast program you want to use
- The name of the database you want to blast against
- Your candidate sequence(s)

The BioPython remote NCBI wrapper is available in the Bio.Blast module. There
is a single wrapper for all the blast types NCBIWWW. The input of the wrapper
can be a SeqRecord instance. The output can be handled like a file variable
opened for reading.

The biopython toolkit : running BLAST

from Bio.Blast import NCBIWWW
import Bio.SeqIO
with open('candidate.fasta') as fastafile :
 records=Bio.SeqIO.parse(fastafile,'fasta')
 record=next(records)
 blastresult=NCBIWWW.qblast('blastp','nr',record.seq)
 with open('blastresult.xml','w') as resultfile :
 resultfile.write(blastresult.read())

Shortcut to get the
next SeqRecord

Run remote blast

Write report to file

BioPython has tried to keep up with the various file formats in which blast
reports can be generated : text, HTML, XML.

However, as text and HTML formats evolve with the blast or wwwblast versions
without warning nor sufficient documentation, BioPython has decided to
maintain only XML Blast parsing tools.

When planning to use BioPython for parsing XML output, the following option
must be present on the (local) blast command-line: -outfmt 5

Blast report parsing uses the same principles as (annotated) sequence file
parsing. The contents of the file is stored in a set of objects belonging to
classes dedicated to specific parts of the alignment description. All these
classes are described in the Bio.Blast module and submodules.

At the top level, parsing a blast report yields one or more BlastRecord objects

The biopython toolkit : parsing BLAST results

import Bio.Blast.NCBIXML
with open('blastreport.xml') as blastfile:

for record in Bio.Blast.NCBIXML.parse(blastfile)

Blast report parsing uses the same principles as (annotated) sequence file
parsing : the contents of the file is stored in a set of objects belonging to
classes dedicated to specific parts of the alignment description.

All these classes are described in the Bio.Blast module and submodules.

At the top level, parsing a blast report yields one Record object per query
sequence.

The biopython toolkit : parsing BLAST results

import Bio.Blast.NCBIXML

with open('blastreport.xml') as blastfile:
for record in Bio.Blast.NCBIXML.parse(blastfile)

Module providing Blast XML
parsing functions

return one Record at a time

A Diagram of BLAST result related classes with their main properties

The biopython toolkit : parsing BLAST results

Record

alignments[]

header

parameters

database

Alignment

title

length

hsps[]

HSP

expect

query

match

sbjct

query_start/end

sbjct_start/end

...

Info about the
program/version,
query sequence

e-value, penalties...

name, size...

Id of the matching sequence

Alignment length

High Scoring Pair

e-value

query seq. letters

subject seq. letters

match type letters

location in
query/subject

http://biopython.org/DIST/docs/api/Bio.Blast.Record-module.html

http://biopython.org/DIST/docs/api/Bio.Blast.Record-module.html

Printing information about alignments and HSPs

The biopython toolkit : parsing BLAST results

import Bio.Blast.NCBIXML
with open('localblastreport.xml') as blastfile:

for record in Bio.Blast.NCBIXML.parse(blastfile)
for alignment in record.alignments:

for hsp in alignment.hsps:
if hsp.expect < MAX_EXPECT:

print(alignment.title)
print(alignment.length)
print(hsp.expect)
print(hsp.query[0:50])
print(hsp.match[0:50])
print(hsp.sbjct[0:50])

Using biopython in a custom module

Exercise 12 : Converting blast results to CSV

- Create a new directory src/ex212
- Create a new file blast2csv.py defining a class Blast2Csv with :

- A constructor taking as additional arguments : a blastfile and a csvfile
with the names of the input and output files.

- A generateCsvFromBlast(self) method extracting information from the
blast report an generating a CSV row for each HSP with a set of default
fields : queryname, subjectname, qstart (start of the HSP in the query),
qend (end of the HSP in the query).

- Create a new file testblast2csv.py defining a test case for the
Csv.generateCsvFromBlast method :

- A test counting the lines of the CSV file after conversion (you can
generate the CSV file as ../../tmp/localblastresult.csv)

- Run the tests using ../../data/blast/localblastresult.xml (the
resulting file should contain 20 lines).

32

Using biopython in a custom module

Exercise 13 : Converting blast results to CSV with filters

- Copy the files from directory src/ex212 to directory src/ex213
- Enhance the Blast2Csv class to allow output filtering according to a

minimum alignment length percent with respect to the query sequence :
- Define a new attribute (minalignpercent) and its accessor
- Enhance the generateCsvFromBlast(self) method to write only HSPs

exceeding the minalignpercent threshold
- Add the alignment length and percent to the output columns.

- Add a new method to testblast2csv.py to test the new functionality:
- Generate only rows for alignments where the size of the alignment

exceeds the size of the subject (minalignpercent >= 1.0)

- A test counting the lines of the CSV file after conversion (you can generate
the CSV file as ../../tmp/localblastresultwiththreshold.csv)

- Run the tests using ../../data/blast/localblastresult.xml (the
resulting file should contain 7 lines).

33

BioPython could be the subject of several training sessions considering the
wide area of topics it covers.

For (beginning) Pythonistas eager to make use of this set of libraries, two
valuable entry points are:

- The top level page of the documentation Wiki with links to the cookbook
and tutorials covering the main BioPython classes :

http://biopython.org/wiki/Documentation

- The top level page of the BioPython API documentation. This set of pages
is automatically generated from the BioPython docstrings embedded in the
code :

http://biopython.org/DIST/docs/api/

BioPython wrap up

http://biopython.org/wiki/Documentation
http://biopython.org/DIST/docs/api/

Outline : Session 2

Using Domain Specific Modules

1. The BioPython Toolkit
2. Processing Sequence Data
3. Running BLAST and Processing Results
4. Accessing Remote Resources
5. Working with Graph Structures
6. Putting it all Together

35

More and more, repositories allow direct access to datasets. If retrieving a small
number of datasets by hand is possible, it quickly becomes important to be able
to download large collections of files.

In order to do so, two key issues need to be addressed:

1. How did the repository design the dataset identifiers allowing each of them
to have a unique reference ?

In technical terms: how to build the URL (a.k.a “web address”) referencing
datasets of interest.

2. What is the format of the data that will be downloaded ?

It may be in tabular format, or other more structured formats (XML, JSON),
or even plain HTML.

The download protocol (HTTP, FTP or other) is a minor issue because it is
nicely handled by the various Python modules.

36

Fetching data from the Web

Each data repository has its own way of defining URLs for datasets. Methods
for building these URLs are most of the time documented on the data supplier’s
website: search for API, or better REST API.

However, there always is:
- A constant part including the name of the server and the path to the “parent

directory” where the datasets are made available :

http://data.myrepository.org/rest/datasets/

- A variable part, appended to the constant part, including an identifier that
uniquely references a given dataset :

http://data.myrepository.org/rest/datasets/sequences/Syn_RCC307

http://data.myrepository.org/rest/datasets/taxons/Syn_RCC307

- There may also be optional parameters for specifying a data format to
return:
http://data.myrepository.org/rest/datasets/sequences/Syn_RCC307?fmt=xml

37

Fetching data from the Web : URLs

http://data.myrepository.org/rest/datasets
http://data.myrepository.org/rest/datasets
http://data.myrepository.org/rest/datasets
http://data.myrepository.org/rest/datasets

Ex. 1: Retrieving taxon description records from WoRMS.

1. The base address is :
http://www.marinespecies.org/rest/

(BTW, this is also the page where the documentation is found)

2. It provides a method to retrieve taxon description record knowing an
AphiaID :

/AphiaRecordByAphiaID/{ID}

3. The method contains a parameter between curly braces {ID} that has to be
replaced by an actual value

(There is no mention of formatting options)

The complete URL to retrieve a taxon description record for the taxon identified
by AphiaID 131173, is thus :

http://www.marinespecies.org/rest/AphiaRecordByAphiaID/131173

38

Fetching data from the Web : URLs

http://www.marinespecies.org/rest/
http://www.marinespecies.org/rest/
http://www.marinespecies.org/rest/
http://www.marinespecies.org/rest/

Ex. 2: Retrieving sequence information from EBI/ENA

The documentation on programmatic access for data retrieval is available at:
https://www.ebi.ac.uk/ena/browse/data-retrieval-rest

1. The base address is :
https://www.ebi.ac.uk/ena/data/view

2. Any ENA identifier or identifiers can be appended to the base address:
/{ID1,ID2,ID3}

3. ENA allows to specify an optional format parameter to choose how the
return the data (xml,text,fasta) :

?display=format

The complete URL to retrieve the ENA record for the petB gene in WH8102, in
text format (EMBL) is thus:

https://www.ebi.ac.uk/ena/data/view/AAC05630?display=text

39

Fetching data from the Web : URLs

https://www.ebi.ac.uk/ena/browse/data-retrieval-rest
https://www.ebi.ac.uk/ena/browse/data-retrieval-rest
http://www.marinespecies.org/rest/
http://www.marinespecies.org/rest/
https://www.ebi.ac.uk/ena/browse/data-retrieval-rest

Python provides a requests module with the most user (programmer?) friendly
functions to retrieve data from the web.

For a basic usage, requests includes a get() function where the only
argument is the URL to use for data retrieval. This function returns an object (an
enhanced data structure, more on objects later on) containing both the retrieved
data itself and some metadata (the status of the request, the encoding of the
returned data, the headers sent back from the server…).

The actual data can be accessed in various formats using one of the attributes
or methods of the object : raw, text, json()

40

Fetching data from the Web with requests

>>>import requests
…
>>>r=requests.get('https://www.ebi.ac.uk/ena/data/view/AAC05630&display=fasta')
>>>r.text
'>ENA|AAC05630|AAC05630.1 Synechococcus sp. WH 8103 partial cytochrome b6
\nTACGTGTTCCGGGTCTACCTCACCGGTGGTTTCAAGCGTCCCCGTGAGCTCACCTGGGTC\nACCGGCGTGACCATGGC
CGTGATCACAGTTTCCTTCGGTGTCACCGGTTACTCCCTGCCC\nTGGGACCAGGTTGGTTATTGGGCCGTCAAGATTGTT
TCCGGCGTCCCAGCAGCCATCCCA\nGTTGTGGGTGACTTCATGGTGGAGCTGCTCCGCGGTGGCGAAAGTGTCGGTCAGT
CCACA\nCTCACTCGCTTCTACAGCCTCCACACCTTTGTGATGCCATGGCTGCTCGCCGTATTCATG\nCTCATGCACTTC
CTGATGATTCGGAAGCAGGGCATTTCTGGTCCCTTGTGA\n'

https://www.ebi.ac.uk/ena/data/view/AAC05630&display=fasta

Among the variety of formats proposed by data suppliers, JSON is one of the
most frequently used (with XML). It is a lightweight text based format suited for
the representing structured data that can be described by dictionaries, lists and
scalar values. Data descriptions in JSON look very similar to their Python
counterparts:

41

Fetching data from the Web : JSON format

{ "id" : 12345,
 "records" : [

{ "name" : "Doe",
 "firstname" : "Jane",
 "age" : 25,
 "hired" : true,
 "location" : "Cupertino",
},
{ "name" : "Smith",
 "firstname" : "Jane",
 "age" : 25,
 "hired" : false,
 "location" : null,
}

]}

di
ct

io
na

ry

lis
t

string

number

boolean values

empty value : None

The json module allows conversion between text-based JSON data structures
and Python data structures. It is used in pretty much the same way as the
pickle module.

Ex. 1: Writing a Python data structure into a JSON text file

Ex. 2: Loading a Python data structure from a JSON text file

Fetching data from the Web : JSON format

import json
…
fruit=[...]
with open('fruit.json','w') as jsonfile :

json.dump(fruit,jsonfile)

import json
…
fruit=[...]
with open('fruit.json') as jsonfile :

fruit=json.load(jsonfile)

The json module also handles coding/decoding data from or into text strings.
This makes it unnecessary to use temporary files when retrieving JSON data
from the web destined to be stored in Python variables.

Ex. 3: Converting a Python data structure into a JSON text string.

Ex. 2: Building a Python data structure from a JSON text string

Fetching data from the Web : JSON format

import json
…
fruit=[...]
jsonFruit=json.dumps(fruit)

import json
…
jsonFruit='[{"kind":"apples","qt":10},...]'
fruit=json.loads(jsonfile)

Most well behaved web accessible resources will be able return data in several
formats : text, HTML, XML, JSON.

However, JSON may not be the default format. It is then needed to explicitly
define that we want to retrieve JSON formatted data.

This is achieved by setting a specific “header” to that end, when making the
request :

Fetching data from the Web : JSON format

import requests
…
result=requests.get(url,headers={'Accept' :'application/json'})

Fetching data from the web

Exercise 14 : Remotely retrieving Taxonomic Information

- Create a new directory src/ex214
- Create a new file taxoninforetriever.py defining a class

TaxonInfoRetriever with :
- A getTaxonInfoForAphiaId(self,aphiaId) method retrieving a taxonomic

decription record from Worms and returning a dictionary with a subset
of fields (AphiaID, kingdom, phylum, class, order, family, genus,
scientificname, authority).

- Create a new file testtaxoninforetriever.py defining a test case for the
getTaxonInfoRetriever method.

- Run the tests using aphia ID 130714, and check that the kingdom is
‘Animalia’, the phylum is ‘Annelida’ and the genus is ‘Polygordius’

- Remember, the URL pattern looks like :

http://www.marinespecies.org/rest/AphiaRecordByAphiaID/{aphiaId}

45

http://www.marinespecies.org/rest/

The EBI provides a significant amount of reference data through Web Services
(i.e. : web servers that deliver machine-readable data instead of human-readable
web pages).

The entry point is called EBI-Search :

https://www.ebi.ac.uk/ebisearch

And summary documentation on how to use the search is available at:

https://www.ebi.ac.uk/ebisearch/swagger.ebi

All web-service URLs will start with :

https://www.ebi.ac.uk/ebisearch/ws/rest/

Fetching data from the Web : EBI-Search

https://www.ebi.ac.uk/ebisearch/swagger.ebi
https://www.ebi.ac.uk/ebisearch/swagger.ebi
https://www.ebi.ac.uk/ebisearch/ws/rest/

EBI-Search is based on the concept of domains. Roughly, each “database” to
which access is provided represents a domain, 151 in total as of June 2018.

Among these domains, are : GO (genome ontology), Interpro (Interpro
domains), PFam (protein families), Enzymes…

When performing a request, the actual domain name must be added to the URL

https://www.ebi.ac.uk/ebisearch/ws/rest/{domain}

Then, to retrieve information about a specific entry of this domain, the URL is
completed as follows:

https://www.ebi.ac.uk/ebisearch/ws/rest/{domain}/entry{entryId}

If the entry exists, this returns a short document assessing the validity of the
entry.

Try for yourself :
https://www.ebi.ac.uk/ebisearch/ws/rest/go/entry/GO:1990103

Fetching data from the Web : EBI-Search

https://www.ebi.ac.uk/ebisearch/ws/rest/
https://www.ebi.ac.uk/ebisearch/ws/rest/
https://www.ebi.ac.uk/ebisearch/ws/rest/go/entry/GO:1990103

To have more extensive information about an entry, it is necessary to specify
which pieces of data (or attributes) we want to retrieve.

Again, this is done by completing the URL as follows :

https://www.ebi.ac.uk/ebisearch/ws/rest/{domain}/entry{entryId}?fields={f1,f2,..}

The actual list of fields can be found by inspecting the domain description
document available at :

https://www.ebi.ac.uk/ebisearch/ws/rest/{domain}

This document describes each field in a block looking like :

Fetching data from the Web : EBI-Search

<fieldInfo id=”...” name=”fieldname”>
<options>
…
</options

</fieldInfo>

The name of the field
that can be used to
retrieve information

https://www.ebi.ac.uk/ebisearch/ws/rest/
https://www.ebi.ac.uk/ebisearch/ws/rest/

A valid EBI-Search URL for retrieving the name, description and type of a
GO-Term would be :

https://www.ebi.ac.uk/ebisearch/ws/rest/go/entry/
GO:1990103?fields=name,description

The structure of the query result can be seen as a dictionary with the following
organization :

Fetching data from the Web : EBI-Search

result={ 'entries' : [{ 'id' : 'id',
'source' : 'domain',

 'fields' :
{ 'fieldname1' : [val1, val2..],
 'fieldname2' : [val3, val4..],
…
}

}]}

the entry given in the URL

the fields given in the URL

the search domain

https://www.ebi.ac.uk/ebisearch/ws/rest/go/entry/GO:1990103
https://www.ebi.ac.uk/ebisearch/ws/rest/go/entry/GO:1990103

The result from the example URL :

https://www.ebi.ac.uk/ebisearch/ws/rest/go/entry/
GO:1990103?fields=name,description

Would be :

Fetching data from the Web : EBI-Search

{'entries' : [{'id': 'GO:1990103',
 'source': 'go',
 'fields': {'name': ['DnaA-HU complex'],

 'description': ['A (...) oriC.']}}]

https://www.ebi.ac.uk/ebisearch/ws/rest/go/entry/GO:1990103
https://www.ebi.ac.uk/ebisearch/ws/rest/go/entry/GO:1990103

Fetching data from the web

Exercise 15 : Remotely retrieving Interpro data

- Create a new directory src/ex215
- Create a new file interproinforetriever.py defining a class

InterproInfoRetriever with :
- A getInterproInfo(self,interproId,fields) method retrieving information

about the given interpro entry. The information includes the values of
the fields given as argument.

- Default fields are : name, description, FO

- Create a new file testinterproinforetriever.py defining a test case for
the getInterproInfoRetriever method.

- Run the tests using aphia ID IPR000850, and check that the result contains
one entry with three elements for the GO field.

51

Outline : Session 2

Using Domain Specific Modules

1. The BioPython Toolkit
2. Processing Sequence Data
3. Running BLAST and Processing Results
4. Accessing Remote Resources
5. Working with Graph Structures
6. Putting it all Together

52

The most widely used Python toolkit to handle graph data is undoubtedly
networkx. It provides a relatively intuitive means to manipulate graph elements:
nodes (or vertices) and edges (or links). Both of which can contain a rich set of
attributes.

Working with graph data: networkx

A graph can be created using the Graph() constructor method :

By default, graphs are undirected and support only one edge between two
nodes. To build these special type of graphs, specific constructors have to be
used:

Working with graph data: networkx

import networkx as nx

simpleGraph=nx.Graph()

import networkx as nx

directedGraph=nx.DiGraph()

multiGraph=nx.MultiGraph()

multiDirectedGraph=nx.MultiDiGraph()

Edges are directed from source to destination nodes

There can be more than one edge between two nodes

You guessed it: a combo of the above

Graph nodes can be of any hashable type (a type having some kind of id that
does not change over the lifetime of an object):

- Scalar types are hashable types, whereas mutable collections such as lists
or sets are not.

- Objects of user defined classes are hashable but they all have a different id,
even when all their attributes have identical values.

While it is possible to use objects as graph nodes it is not recommended. A
best practice is to use string representations of objects instead, and to
keep a separate dictionary of objects indexed by the string representation
or to add objects as node attributes.

To add one or several nodes to a graph, the add_node() or add_nodes_from()
methods can be used:

Working with graph data: networkx

simpleGraph=nx.Graph()
simpleGraph.add_node('node one')
simpleGraph.add_nodes_from(['node two','node three'])

Any iterable collection can be used

It is also possible to add nodes together with (a dictionary of) attributes. In
order to do so, the container must contain(!) tuples with two elements: the
node, and a dictionary of attributes :

Working with graph data: networkx

nodeWithAttributes=('node four',{'price':10, 'quantity':3})

simpleGraph.add_nodes_from([nodeWithAttributes])

The actual node The attribute dictionary

The (single-element) list with the tuple

The tuple delimiters

Similarly, edges are added with the add_edge() or add_egdes_from()
methods. If the nodes of the edge or edge list do not already exist in the graph,
they are automatically added. Just as with nodes, edges can also have an
attribute dictionary which can be added at the same time as an edge.

Working with graph data: networkx

simpleGraph.add_edge('node one','node five')

edgeWithAttributes=('node six','node seven', {'throughput' : 20})

simpleGraph.add_edges_from([edgeWithAttributes])

Already part of the graph Automatically added to the graph

Edge attributesEdge endpoints

Adding attributes a posteriori is also possible. Both for nodes with the nodes
attribute, And for edges with the edges attribute. These attributes can also be
used to return information about a node (resp. edge):

Working with graph data: networkx

>>>simpleGraph=nx.Graph()
>>>simpleGraph.add_node('node one')

>>>simpleGraph.nodes['node one']['colour']='white'
>>>simpleGraph.nodes['node one']
{'colour':'white'}

>>>simpleGraph=nx.Graph()
>>>simpleGraph.add_edge('Roscoff','Brest')

>>>simpleGraph.edges['Roscoff']['Brest']['distance']=67
>>>simpleGraph.edges['Roscoff']['Brest']
{'distance':67}

Addition of the ‘colour’ attribute to an existing node

Addition of the ‘distance’ attribute to an existing edge

Retrieving the list of nodes and edges is also straightforward using these
attributes:

Working with graph data: networkx

>>>simpleGraph=nx.Graph()
>>>simpleGraph.add_node('node one')

>>>list(simpleGraph.nodes)
['node one']

>>>simpleGraph=nx.Graph()
>>>simpleGraph.add_edge('Roscoff','Brest')

>>>list(simpleGraph.edges)
[('Roscoff','Brest')]

Explicit list conversion is needed here

A list of tuples with two elements each: the source and destination nodes of the edge

Finally, removing graph components is done through the remove_node(),
remove_nodes_from() and remove_edge(), remove_edges_from() methods.

Working with graph data: networkx

>>>simpleGraph=nx.Graph()
>>>simpleGraph.add_node('node one')
>>>list(simpleGraph.nodes)
['node one']
>>>simpleGraph.remove_node('node one')
>>>list(simpleGraph.nodes)
[]

>>>simpleGraph=nx.Graph()
>>>simpleGraph.add_edge('Roscoff','Brest')
>>>list(simpleGraph.edges)
[('Roscoff','Brest')]
>>>simpleGraph.remove_edge('Brest','Roscoff')
>>>list(simpleGraph.edges)
[]

Works because the graph is
undirected

Working with graph data

Exercise 16

- Create a new directory src/ex216
- Create a new file graphbuilder.py defining a class GraphBuilder with :

- A buildGraphFromCsv(self,filename,srccolumn,destcolumn) reading a directed
graph from a CSV file, assuming source nodes are in the column named
srccolumn, and destination nodes are in the column destcolumn

- All information in other columns will be stored as a dictionary where keys are
column headers and values cell values. The list of dictionaries of each edge will
be stored in the edge’s ‘info’ attribute.

- An extractSubGraphWithSourceNode(self,srcnode) method returning a
subgraph with all the edges of the complete graph having srcnode as source.
Associated attributes will also be copied to the subgraph edges.

- Create a new file testgraphbuilder.py defining a test case with one test
method each of the two above methods.

- Run the tests using ‘../../data/tabular/aquasymbio-data.csv’.
The complete graph should contain 1207 nodes. Check that the edge from
‘Parvilucifera infectans’ to ‘Alexandrium pacificum’ contains two entries in its ‘info’
attribute. Check that the subgraph with source node ‘Amyloodinium ocellatum’
contains 129 nodes.

61

Outline : Session 2

Using Domain Specific Modules

1. The BioPython Toolkit
2. Processing Sequence Data
3. Running BLAST and Processing Results
4. Accessing Remote Resources
5. Working with Graph Structures
6. Putting it all Together

62

What should have been imprinted in your brain after these training sessions:

- The basics of the Python language with its data structures and flow control
mechanisms

- Knowledge on how to use a portfolio of general purpose modules
(argument parsing, logging, unit testing, using the web)

- Basic reflexes on where and how to look for in-depth documentation when
necessary

- Best practices on how to write WORM code [Write Once Read Many (times)]

- An overview of bioinformatics (or related) toolkits: BioPython, NetworkX

Final wrap up

