
This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International
License. [link]

Managing Data
with Python

Session 102

1

June 2018

M. HOEBEKE
Ph. BORDRON
L. GUÉGUEN

G. LE CORGUILLÉ

http://creativecommons.org/licenses/by-nc-sa/4.0/

 Outline : Session 2

Working With Heterogeneous Data

1. Regular Expressions: re
2. Methods for Sorting Data: sort & lambda functions
3. Storing Intermediate Results: pickle
4. Using Tabular Data : csv
5. Virtual Environments

2

3

Regular Expressions : an Overview

Regular Expressions are used to analyse and process text information :
- By searching for a specific constructs: patterns, combinations of patterns)
- By extracting the portions of text that match the patterns for later use
- By using the portions to replace portions of the original text

Examples from our fasta example file:

- Extract strain information (species, strain identifier)
- Extract position information (start, stop, strand)
- Correct position information (replace start, stop or strand with updated

values)

>CK_Syn_RCC307_2183:1894037-1895116:1|psbA

4

Regular Expressions : Patterns

Patterns are the building blocks for searching textual data. They are defined
using specific syntactic elements of two types :

- Elements to specify the nature of the pattern components (letters, digits…)
- Elements to specify how the components are organized wrt. one another

(location in the text, number of occurrences)

Some common text-based structures that can be defined by patterns are :

- Dates : number - space - letters - space - number

 number - slash - number- slash - number

- DNA sequences: a series of letters taken from the set {a,t,g,c,A,T,G,C}

- Protein sequences: a series of letters taken from the amino acid codes, with
constraints on the starting letter (usually M).

1 Jan 2018

01/01/2018

5

Regular Expressions : Patterns

In Python, regular expressions are made available through the re module. This
module provides, amongst other things, a set of special syntax elements to
define patterns. A pattern is then an ordinary string containing one or more of
these special syntax elements.
These syntax elements allow to define constraints on
the type of the allowed characters :

A date can then be defined with the following pattern :

. Any character

\d A digit (a character in the range 0 to 9)

\w An alphanumerical character: a to z, A to Z, a digit, an underscore

\s A space character (space or tab)

[aeiou] One of the a,e,i,o,u characters.

[^aeiou] Any character except a,e,i,o,u

1 Jan 2018 "\d\s\w\w\w\s\d\d\d\d"

01/01/2018 "\d\d/\d\d/\d\d\d\d"

In uppercase, they m
ean “anything except.”

6

Regular Expressions : Patterns

These syntax elements also allow to define constraints on how many
occurrences of a character (or character type) are allowed :

The date patterns can be expressed as :

* Any number of occurrences

? Zero or one occurrence

+ One or more occurrences

{n} Exactly n occurrences

{n,} At least n occurrences

{,m} At most m occurrences

{n,m} Between n and m occurrences

1 Jan 2018 "\d{1,2}\s\w{3}\s\d{4}"

01/01/2018 "\d{2}/\d{2}/\d{4}"

7

Regular Expressions : Patterns

The sequence patterns can be expressed as :

- DNA :

- Proteins :

Two special characters allow to “anchor” a pattern at either end of a text line:

To look for a date of the first example type at the beginning of a line we would
use:

And to look for a date at the end of a line, we would use:

"[atgcATGC]+"

"[mM][ACDEFGHIKLMNOPQRSTUVWXY]+"

^ Anchors the pattern from the beginning of the line

$ Anchors the pattern at the end of the line

"^\d{1,2}\s\w{3}\s\d{4}"

"\d{1,2}\s\w{3}\s\d{4}$"

8

Regular Expressions : Patterns

Pattern elements can also be grouped using parentheses.

Hence, to look for a date of the second example type at the beginning of a line
we would use:

Pattern grouping will allow us in Python to assign the matching groups to
variables. More on that later.

"(\d{2}/){2}\d{4}"01/01/2018

9

Regular Expressions : Using the re module

1. Define the regular expression by using re.compile()

2. Look for the pattern in a candidate string
a. By matching the whole string

b. By looking “inside” the string

patternVar = re.compile(r"patterndef")
Denotes a string containing a regular expression.

datePattern = re.compile(r"(\d{2})/(\d{2})/(\d{4})")

matchVar = re.match(patternVar,candidateText)

dateMatch = re.match(datePattern,"01/01/2018")

matchVar = re.search(patternVar,candidateText)

dateMatch = re.search(datePattern,"01/01/2018")

10

Regular Expressions : Using the re module

3. Check if the pattern was found and use it if it was found

if matchVar is not None :
do something useful with matchVar
matchString=matchVar.group(0)

if dateMatch is not None :
day=int(dateMatch.group(1))

Group 0 stands for the whole pattern match

Group 1 stands for the match between the first parentheses

Regular Expressions

Exercise 11

- Copy sequencetools.py and readseq.py to src/ex11
- Rename readseq.py to countseqstrand.py
- Modify the countseqstrand.py script so that it takes only one sequence

file as argument (-s or --seqfile)
- Modify the countseqstrand.py script to make use of regular expressions

to count the number of sequences on both strands (leading and lagging),
knowing that the sequence identifiers have the following form :

- Run the program using the file :
- '../../data/fasta/Syn_RCC307.fna'

11

>CK_Syn_RCC307_2183:1894037-1895116:1|psbA

Strand : 1, 0 or -1

12

Regular Expressions : Tips & Tricks

Grouping Tip : groups can be named, and once matched, can be referenced by
their name.

datePattern = re.compile(r"(?P<day>\d{2})/
(?P<month>\d{2})/
(?P<year>\d{4})")

dateMatch = re.match(datePattern,"01/01/2018")

if dateMatch is not None :
day=int(dateMatch.group('day'))

13

Regular Expressions : Tips & Tricks

Case sensitivity tip: The re compile(), search() and match() function have
an optional flags argument. One of its values, re.IGNORECASE (or re.I) makes
these function ignore the case of letters in the text to match.

All the following text strings match the pattern :

datePattern = re.compile(r"(?P<day>\d{2})
(?P<month>\w{3})
(?P<year>\d{4})",
re.IGNORECASE)

dateMatch = re.match(datePattern,"01 Jan 2018")

dateMatch = re.match(datePattern,"01 jan 2018")

dateMatch = re.match(datePattern,"01 JAN 2018")

14

Regular Expressions : Tips & Tricks

Text replacement tip: re proposes a sub() function allowing to substitute
(replace) a pattern with another string using a single call.

Groups can be reused in the replacement string with a special syntax :

>>>newDate = re.sub(r"(?P<day>\d{2})/
(?P<month>\d{2})/
(?P<year>\d{4})",
r"\g<month>/)
\g<day>/)
\g<year>",
"31/01/2018")

>>>newDate
'01/31/2018'

>>>newFruit = re.sub(r"oranges",r"bananas",
"I like oranges")

>>>newFruit
'I like bananas'

Regular Expressions

Exercise 12

- Copy sequencetools.py and countseqstrand.py to src/ex12
- Rename countseqstrand.py to countgenelength.py
- Modify the sequencetools.py module :

- to add the following descriptors to the sequence record structure :
POSITION_MIN, POSITION_MAX, STRAND

- to add a function computeSequencePositionInfo using regular
expressions to fill the above descriptors for a sequence record
structure based on the contents of the sequence identifier.

- Modify the countgenelength.py script to print the size of the shortest
and the longest genes.

- Run the program using the file :
- '../../data/fasta/Syn_RCC307.fna'

15

>CK_Syn_RCC307_2183:1894037-1895116:1|psbA

Stop positionStart position

16

Sorting: using the default sort features

Python provides a sort() function to sort lists “in-place” : it changes the order
of the list elements. By default elements are sorted in ascending order using the
“natural” comparison method of elements. The list elements must be of a
homogeneous comparable type.

This is the case with scalar types:

>>> fruit=['oranges','bananas','apples']
>>> fruit.sort()
>>> fruit
['apples', 'bananas', 'oranges']
>>> numbers=[678,341,108,834]
>>> numbers.sort()
>>> numbers
[108, 341, 678, 834]

17

Sorting: using the default sort features

But lists of lists (of lists) of homogeneous comparable types can also be sorted:

When the list elements cannot be compared, an exception is thrown :

>>> basket=[['oranges',10],['apples',20],
['bananas',2],['apples',3]]
>>> basket.sort()
>>> basket
[['apples', 3], ['apples', 20], ['bananas', 2], ['oranges',
10]]

>>> basket=[{'oranges' : 10}, {'apples' : 20},
{'bananas':2}]
>>> basket.sort()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: '<' not supported between instances of 'dict' and
'dict'

18

Sorting: reversing the sort order

The sort order can be reversed by adding the reverse=True parameter to the
sort() function.

>>> basket=[['oranges',10],['apples',20],
['bananas',2],['apples',3]]
>>> basket.sort(reverse=True)
>>> basket
[['oranges', 10], ['bananas', 2], ['apples', 20], ['apples',
3]]

19

Sorting: generating a sorted element collection

Python also provides a sorted()function. This function returns a new
collection with ordered elements of the collection it is applied upon.

>>> fruit=['oranges','bananas','apples']
>>> sortedfruit=sorted(fruit)
>>> fruit
['oranges', 'bananas', 'apples']
>>> sortedfruit
['apples', 'bananas', 'oranges']
>>> revsortedfruit=sorted(sortedfruit,reverse=True)
>>> revsortedfruit
['oranges', 'bananas', 'apples']

20

This function can also be applied to a dictionary. It will then generate a list with
the ordered keys of the dictionary.

>>> basket={'oranges' : 10,'apples' : 20,'bananas' : 2}
>>> sorted(basket)
['apples', 'bananas', 'oranges']

Sorting: generating a sorted element collection

21

Both sort() and sorted() allow to define which “key” to use to perform the
sorting. A key is a function that will be applied to each element of the collection
to be sorted prior to its comparison.

Ex 1: Ordering angles (in degrees)

>>> def angular_compare(degrees) :
... return (degrees % 360)
...
>>> angles=[0,90,180,270,360,450,540,630,720,810,900]
>>> sorted(angles,key=angular_compare)
[0, 360, 720, 90, 450, 810, 180, 540, 900, 270, 630]

Sorting: defining the sort key

22

Ex 2: Ordering a list of dictionaries according to a dictionary key name

Ex 3: Ordering a list of lists according to a given inner element index

>>> basket=[{'fruit':'apple', 'qt' :
20},{'fruit':'banana','qt':10},{'fruit':'orange','qt': 2}]
>>> def fruitname_compare(fruititem):
... return fruititem['fruit']
...
>>> sorted(basket,key=fruitname_compare)
[{'fruit': 'apple', 'qt': 20}, {'fruit': 'banana', 'qt': 10},
{'fruit': 'orange', 'qt': 2}]

Sorting: defining the sort key

>>> basket=[[10,'apples'],[3,'oranges'],[5,'bananas']]
>>> def fruitposition_compare(fruitelement):
... return fruitelement[1]
...
>>> sorted(basket,key=fruitposition_compare)
[[10, 'apples'], [5, 'bananas'], [3, 'oranges']]

23

When a (sort) function is only used once, it is cumbersome to define it as such.
Python provides a special syntax allowing to define a function “on the fly”.
These functions are called lambda functions, and are built as follows :

Ex. 4 : Using a lambda function to sort angles

Sorting: using lambda functions

>>> angles=[0,90,180,270,360,450,540,630,720,810,900]
>>> sorted(angles,key=lambda degrees : (degrees % 360))
[0, 360, 720, 90, 450, 810, 180, 540, 900, 270, 630]

lambda args : expression_using_arg

The variable where the
argument(s) will be made

available on each call

An expression using the argument(s) and
that will be returned as the result of the

lambda function call

24

Ex 5: Ordering a list of dictionaries according to a dictionary key name, using a
lambda function

Ex 6: Ordering a list of lists according to a given inner element index using a
lambda function

>>> basket=[{'fruit':'apple', 'qt' :
20},{'fruit':'banana','qt':10},{'fruit':'orange','qt': 2}]
>>> sorted(basket,key=lambda d : d['fruit'])
[{'fruit': 'apple', 'qt': 20}, {'fruit': 'banana', 'qt': 10},
{'fruit': 'orange', 'qt': 2}]

Sorting: using lambda functions

>>> basket=[[10,'apples'],[3,'oranges'],[5,'bananas']]
>>> sorted(basket,key=lambda e : e[1])
[[10, 'apples'], [5, 'bananas'], [3, 'oranges']]

Sorting Data

Exercise 13

- Copy sequencetools.py and countgenelength.py to src/ex13
- Rename countgenelength.py to sortgenes.py
- Modify the sequencetools.py module :

- to add a function sortSequencesByLength taking the sequence
information dictionary as argument and returning the list of sequence
identifiers ordered by ascending sequence length. Add a second
optional argument allowing to define the sort order (ascending or
descending).

- Modify the sortgenes.py script to display the first and last sequence ids
and lengths after sorting the genes.

- Run the program using the file : '../../data/fasta/Syn_RCC307.fna'

- Check that the optional sort order argument works as expected.

25

26

When loading and parsing the original input data is expensive
(time-consuming), Python offers an easy way to store data structures in a
“pickle” file. Data stored in such pickle files can be rapidly loaded by other
Python programs, or by subsequent runs of the same program.

To store a data structure in a pickle file, the pickle.dump() function is used as
follows :

Managing intermediate results with pickle

import pickle
…
with open('mydata.pickle','wb') as pfile :

pickle.dump(mydatastructure,pfile)

Open the file for writing (‘w’)
data in binary (‘b’) format.

The variable to store in the pickle file.

27

To load a data structure previously dumped in a pickle file, the pickle.load()
function is used as follows :

import pickle
…
with open('mydata.pickle','rb') as pfile :

mydatastructure=pickle.load(pfile)

Open the file for reading (‘r’)
data in binary (‘b’) format.

The variable to fill with the contents of the pickle file.

Managing intermediate results with pickle

Storing intermediate results

Exercise 14
- Copy sequencetools.py and sortgenes.py to src/ex14
- Modify the sequencetools.py module :

- to add a function saveSequenceIntoPickleFile taking a filename
and the sequence information dictionary as arguments and storing the
sequence information dictionary in pickle format in the file

- to add a function loadSequenceFromPickleFile taking a filename as
argument and returning the sequence information dictionary after
loading it from the pickle file

- Modify the sortgenes.py script to add an option (-p or --pickle) followed
by a filename :

- when both options -s and -p are present, store the sequence
information dictionary in a pickle file whose name is given

- when -p is present without -s, load the sequence information dictionary
from the pickle file whose name is given

- use the verbose mode to print which pickle function is used.

- Run the program using the file :
'../../data/fasta/cyanorak_complete.fna'

28

29

Data is often stored in tabular data : each line (or record) contains a fixed
number of columns separated by a well-defined character (most frequently a
semi-colon or a tab character). The first line of the file may be a header line
containing the column labels.

The csv module provides all the functionality to read and write tabular data.

When loading data, it reads one line at a time, and returns the parsed result
either as a list or as a dictionary.

Ex. 1: Reading tabular data from a tab-delimited file, one list per line

Using tabular data with csv

import csv
…
with open('mydata.tsv') as csvfile :

reader=csv.reader(csvfile,delimiter='\t'))
for line in reader :

print(", ".join(line))

Optional, comma by default.

Each element of line contains the value of one column

30

Ex. 2: Reading tabular data from a tab-delimited file, one dictionary per line.
The first line of the file contains the column headers.

Ex. 3: Reading tabular data from a tab-delimited file, one dictionary per line,
explicitly defining the column headers.

Using tabular data with csv

import csv
…
with open('mydata.tsv') as csvfile :

reader=csv.DictReader(csvfile,delimiter='\t'))
for line in reader :

print(", ".join(line.values()))

import csv
…
with open('mydata.tsv') as csvfile :
reader=csv.DictReader(csvfile,fieldnames=['lastname','firstna
me','age'],delimiter='\t'))

for line in reader :
print(", ".join(line.values()))

A dictionary where the keys are the column values of the first line in the file.

A dictionary where the keys are the column values of the fieldnames argument.

31

For storing data, the writerows() method allows to write a whole list of lines
at once.
Lines can also be written one at a time with writerow()

Ex. 4: Writing tabular data into a comma delimited file, one list per line.

Using tabular data with csv

import csv
…
fruit=[['apples',10],['bananas',3],['oranges',5]]
with open('fruit.csv','w') as csvfile :

writer=csv.writer(csvfile)
writer.writerows(fruit)

32

Ex. 5: Writing tabular data into a comma delimited file, one dictionary per line,
using a subset of the keys.

Ex. 6: Writing tabular data into a comma delimited file, one dictionary per line,
using all the keys.

Using tabular data with csv

import csv
…
fruit=[{'name':'apples','qt' : 10,'price':4.5},

{'name':'oranges','qt' : 5,'price':3.2},
{'name':'bananas','qt' : 3,'price':2.0}]

with open('fruit.csv','w') as csvfile :
writer=csv.DictWriter(csvfile,fieldnames=['name','qt']))
writer.writeheader()
writer.writerows(fruit)

(…)
with open('fruit.csv','w') as csvfile :

writer=csv.DictWriter(csvfile,fieldnames=fruit[0].keys()))
writer.writeheader()
writer.writerows(fruit)

Working with tabular data

Exercise 15
- Create a new directory src/ex15
- Write a module called inventairestools.py containing :

- a function called loadBiotopes taking a filename as argument and
using a csv.DictReader to load the contents of the file which is
supposed to contain a header line, and columns separated by a tab
character ('\t')

- the function returns a list of dictionaries, one for each data line of the
file.

- Write a script called loadinv.py :
- processing the command line arguments (-b or --biotopes followed

by a filename)
- calling the loadBiotopes function of inventairestools.py
- displaying the contents of the first data line of the file.

- Run the program using the file :

'../../data/tabular/inv_biotopes.tsv'

33

Working with tabular data

Exercise 16
- Look at the following data files in the data/tabular directory :

- inv_observations.tsv, inv_nomsespeces.tsv,
inv_especes.tsv and inv_biotopes.tsv

- Each table contains an id column.
- The table in file inv_observations.tsv contains columns with ids

referencing the entries of the other tables (id_biotope,
id_nomespece, id_espece).

- The goal of the exercise is to generate a CSV file with a line for each
observation containing a summary of the related data as follows :

34

id date genre espece aphiaid eunis biotope

from inv_observations.tsv

from inv_nomsespeces.tsv

from inv_especes.tsv

from inv_biotopes.tsv

Working with tabular data

Exercise 16
- Copy both inventairestools.py and loadinv.py to a new directory

src/ex16
- Rename loadinv.py to summarizeobs.py
- Extend the inventairestools.py module to add the new functions :

- loadSpeciesNames, loadObservations, loadSpecies taking a
filename as argument and using a csv.DictReader to load the
contents of a file which is supposed to contain a header line, and
columns separated by a tab character ('\t')

- the function returns a list of dictionaries, one for each data line of the
file.

- try to minimize cutting/pasting code, write functions instead
- Modify the summarizeobs.py script to :

- process the command line arguments (-b or --biotopes, -s or
--species, -n or --speciesnames,-o or --observations,-r or
--resultfile)

- call the loadXXX functions of inventairestools.py
- store the table with the summary in a resultfile (you can use

'/tmp/observations.csv' for ex.)
- Run the program with the inv_* data files.

35

36

The Python interpreter comes with a load of standard modules. However,
sometimes it is necessary to install additional modules. Their installation in the
system (shared) Python directories is not always possible or recommended.

Enter the Python virtual environments. These allow the installation in a user
directory of an instance of the Python interpreter and its standard modules.
This instance can then be activated making it the default Python installation for
a work session. Once activated, module installations can be carried out in this
virtual environment by the user who created the virtual environment in the first
place.

This is a very cheap operation. It is thus frequent to create one instance of a
virtual environment for every application. This allows to tailor which modules or
even which module versions are available to applications.

Virtual Environments

37

PyCharm provides all the functionalities to create virtual environments and to
manage module installations (or removals) in these environments.

Virtual Environments with PyCharm

http://www.youtube.com/watch?v=4v1bLNItxBM
http://www.youtube.com/watch?v=P51uGaknA6s

38

Python installation provide a virtualenv command. It takes an argument with
a (not already existing) directory name where the virtual environment will be
created.
It supports several options, most notably -p followed by the Python interpreter
that is to be used in the virtual environment.

Once the virtual environment is created, it has to be activated with the following
command :

The prompt will be prefixed with the name of the virtual environment indicating
that activation was successful.

It then becomes possible to install new modules in the environment by using
the pip install command

Virtual Environments Using a Terminal

[foobar] virtualenv -p python3 myvenv

[foobar] . ./myvenv/bin/activate

(myvenv)[foobar] pip install modulename

39

Screencast Time Again!

Virtual Environments Using a Terminal

http://www.youtube.com/watch?v=J1UywjlzBl8

Virtual Environments

Exercise 17

- With PyCharm :
- create a virtual environment, based on the python3 interpreter, and

with the name abimsenv
- install the requests module in this virtual environment
- check that the module can be imported without errors

- For those having a little Linux know-how:
- perform the same operations in your project directory (remember the

cdprojet command?)

40

