
Statistics with

Bernard Billoud
Morphogenesis of Macro-Algae - UMR8227

Bernard.Billoud@sb-roscoff.fr

June 1, 2021

B.B. (MMA / SBR) Stats with R June 1, 2021 1 / 72



Introduction: what it is all about Contents

Long is the day

1 Introduction:
what it is all about

Setting up a test
2 The normal law

From discrete to continuous
Properties
Cumulative Density Function

3 Sampling
Normal
not Normal
Sample size and convergence

4 Testing
one sample against a normal
population
two samples
paired samples
variance
more than two samples
normality
non-normal variables
small samples of unknown
distribution
counts in classes
linear dependance
combined effects
non-linear dependance

5 Conclusion
Take-home graph

B.B. (MMA / SBR) Stats with R June 1, 2021 2 / 72



Introduction: what it is all about Setting up a test

The father of all tests: the Gauss test
What proportion of all "usually-washed" T-shirts
are whiter than the one washed with the new OMO?

T-Shirt whiteness distribution:
31 shades of white
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Introduction: what it is all about Setting up a test

The T-Shirt test (enhanced version)
Threshold Choose a confidence level, e.g. Ó = 0.05;

Null hypothesis H0 Let us suppose that the new OMO is not better
than my usual powder;

Variable distribution Knowing the distribution of W ,
the whiteness of my Ntot = 216 regular T-Shirts;

Test value Knowing WO the whiteness of the T-Shirt I washed
using the new OMO;

p-value The probability to find a regular T-Shirt as white as
(or whiter than) the OMO T-Shirt is:

P(W ≥WO ) =
N(W ≥WO )

Ntot

As P = 0.06 ≥ Ó, it can be expected that by chance, a T-Shirt picked at
random among the regular ones would be at least as white as the one
I washed with the new OMO.

So:
I cannot assert that the new OMO washes whiter than my usual powder.
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Introduction: what it is all about Setting up a test

Code for the T-Shirt test
# T-Shirt whiteness distribution -- version 1

tsw <- read.table("RegularWashing.csv",header=T)

B = (min(tsw$whiteness)-0.5):(max(tsw$whiteness)+0.5)

h <- hist(tsw$whiteness,breaks=B)

W = h$mids

N = h$counts

# T-Shirt whiteness distribution -- version 2

N = c(1,1,2,2,3,4,5,7,8,9,10,11,12,13,13,14,13,13,12,11,10,9,8,7,5,4,3,2,2,1,1)

W = seq(0,length(N)-1)

# Whiteness of the OMO-washed T-Shirt and number of whiter T-Shirts

WO = 25

listOK = N[W>=WO]

nOK = sum(listOK)

# Test

Ntot = sum(N)

cat("\n",Ntot," T-Shirts, in which ",nOK," have whiteness >= ",WO,": ",sep="")

print(listOK)

pv = nOK / Ntot

cat("p-value =",pv,"\n")

# Graphic representation

barplot(N,main="T-Shirt whiteness distribution",density=30-W,

xlab="whiteness",ylab="# of T-Shirts",names.arg=W)

addOK = c(rep(0,WO),listOK)

barplot(addOK,col="pink",add=TRUE)
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The normal law From discrete to continuous

Counting and computing

A simple model of allocation in classes: binomial (discrete)

The value X (position of one bead) depends on multiple
(n rows) "choices" (L/R) with probability p (= 1/2)

Distribution among n +1 values (bucket 0 ≤ k ≤ n):

P(X = k) = Bn,p(k) =
n!

k!(n − k)!
pk(1− p)n−k

When n increases:
value range extends: X→ continuous

Bn,p→Nnp,np(1−p)
Density of probability:

P(x) = NÞ,ã2 (x) =
1

√
2áã2

e−
(x−Þ)2

2ã2
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The normal law From discrete to continuous

Interlude: installing a package

Studio allows any user to – locally – install a package

install.packages("Rlab")
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The normal law From discrete to continuous

Code for the Galton board
library(Rlab) # Rlab is used for Bernouilli assay (rbern)

# Draw 0 or 1 with proba 0.5 (= 1 pod of the Galton board)

proba = 0.5

d = rbern(1,proba)

cat("\nResult of one Bernouilli assay with p = ",proba,": ",d,"\n",sep="")

# Assuming 0 = L ; 1 = R, draw 14 times 0 or 1 with proba 0.5 -> bucket number for 1 bead

nlin = 14

x = sum(rbern(nlin,proba))

cat("\nSum of n = ",nlin," Bernouilli assays with p = ",proba,": ",x,"\n",sep="")

# Looping

nb = 10000 # Launch 10000 beads

X <- c()

for (i in 1:nb) {

X <- c(X,sum(rbern(nlin,proba)))

}

m = mean(X) # expected: 14 × 0.5 = 7

s = sd(X) # expected:
√
(14×0.5×0.5) = 1.87

cat(nb," sums of ",nlin," assays: mean = ",m,"; s.d. = ",s,"\n",sep="")

cat("Expected: mean = ",nlin*proba,"; s.d. = ",sqrt(nlin*proba*(1-proba)),"\n",sep="")

# Show

hist(X,breaks=-0.5:(nlin+.5),xlim=c(0,nlin),col="orange",

main=paste("Binomial law: n = ",nlin,"; p = ",proba," (pop = ",nb,")",sep=""))
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The normal law From discrete to continuous

Improve efficiency and converge to the Normal law
cat("\nUsing rbinom:\n")

proba = 0.5 ; nlin = 14 ; nb = 10000

# Use the appropriate R function

X = rbinom(nb, nlin, proba)

m = mean(X) # expected: 14 × 0.5 = 7

s = sd(X) # expected:
√
(14×0.5×0.5) = 1.87

cat(nb," sums of ",nlin," assays: mean = ",m,"; s.d. = ",s,"\n",sep="")

cat("Expected: mean = ",nlin*proba,"; s.d. = ",sqrt(nlin*proba*(1-proba)),"\n",sep="")

cat("\nIncreasing n:\n")

# Increase nlin (try also with nb = 100000)

nlin = 436

X = rbinom(nb, nlin, proba)

m = mean(X) # expected: 436 × 0.5 = 218

s = sd(X) # expected:
√
(436×0.5×0.5) = 10.44

hist(X,breaks=-0.5:(nlin+.5),col="yellow",freq=F,

xlim=c(nlin*proba-5*sqrt(nlin*proba*(1-proba)),nlin*proba+5*sqrt(nlin*proba*(1-proba))),

main=paste("Binomial law: n = ",nlin,"; p = ",proba," (pop = ",nb,")",sep=""))

# Compare with Normal

valist = 0:nlin

normd = dnorm(valist,m,s)

points(valist,normd,type="l",lwd=3,col="blue")

cat(nb," sums of ",nlin," assays: mean = ",m,"; s.d. = ",s,"\n",sep="")

cat("Expected: mean = ",nlin*proba,"; s.d. = ",sqrt(nlin*proba*(1-proba)),"\n",sep="")
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The normal law From discrete to continuous

The real Gauss test = Z-test

What proportion of all "usually-washed" T-shirts
are whiter than the one washed with the new OMO?

T-Shirt whiteness distribution - continuous version
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The normal law From discrete to continuous

Code for the Z-test
# Load the library for Gauss.test

library(compositions)

# T-Shirt whiteness distribution

W = 0:30

N = c(1,1,2,2,3,4,5,7,8,9,10,11,12,13,13,14,13,13,12,11,10,9,8,7,5,4,3,2,2,1,1)

Ntot = sum(N)

# Parameters for the norml law

meanW = sum(W*N) / Ntot

sdW = sqrt(sum(W*W*N) / Ntot - meanW**2)

cat("\nWhiteness: mean =",meanW,"s.d. =",sdW,"\n")

# Discrete: WO = 25, test for W >= WO; Continuous: test for W > WO, so:

WO = 24.5

# Test

zt = Gauss.test(WO,mean=meanW,sd=sdW,alternative="greater")

# print(zt)

pv = zt$p.value

cat("p-value for the z-test (W>",WO,"): ",pv,"\n",sep="")

# Graphic representation

valist <- seq(meanW-5*sdW,meanW+5*sdW,length.out=100)

dens <- dnorm(valist,m=meanW,s=sdW)

plot(x=valist,y=dens,type="l",col="darkmagenta",lwd=3,xlab="x",ylab="Probability density at x",

main=paste("Distribution N(",meanW,",",round(sdW,3),")",sep=""))

abline(v=WO,lwd=3,col="red")
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The normal law Properties

Representative curve
With different values for Þ and ã

All curves have the same shape
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The normal law Properties

Parameters Þ and ã

A somewhat useful formula:
P2(x2) = P1(x1) = P1(x2 − (Þ2 −Þ1))

A completely useless formula:
P2(x2) =

ã1
ã2

P1(x1) =
ã1
ã2

P1
(
ã1
ã2

x2 +Þ
(
1− ã1

ã2

))
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The normal law Properties

Mapping to the standard normal distribution

→

A really useful formula: PÞ,ã(x) =
1
ã P0,1

( x−Þ
ã

)
Or: X 7→ NÞ,ã ⇔ X 7→ Þ+ ã ×N0,1
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The normal law Cumulative Density Function

Density of probability and area
Actually, we are interested by the area under the curve

u = −2 u = −1 u = 0 u = 1 u = 2

P(u) ≈ 5.40 10−2 P(u) ≈ 0.242 P(u) ≈ 0.399 P(u) ≈ 0.242 P(u) ≈ 5.40 10−2
A(→ u) ≈ 2.275 10−2 A(→ u) ≈ 0.159 A(→ u) = 0.50 A(→ u) ≈ 0.841 A(x) ≈ 0.97725

Primitive:

P(x < u) ≈ 2.275 10−2 P(x < u) ≈ 0.159 P(x < u) = 0.50 P(x < u) ≈ 0.841 P(x < u) ≈ 0.97725
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The normal law Cumulative Density Function

F is versatile

Left Inside Outside Right

P(x < u) P(u1 < x < u2) P(x < u1 or u2 < x) P(u < x)

= = = =

F (u) F (u2)− F (u1) F (u1) + 1− F (u2) 1− F (u)
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The normal law Cumulative Density Function

Code for various cases
# Suppose we have a population P, for which we know Þ and ã
mu = 218

sigma = 10

cat("H0: x drawn from population: N(Þ,ã) with Þ = ",mu," and ã = ",sigma,"\n",sep="")

valist = c(198, 203, 208, 218, 228, 233, 238)

# pnorm directly gives the probability that x < u

cat("\nLeft test:\n")

for ( u in valist ) {

cat("Under H0, P(x<",u,") = F(",u,") = ",pnorm(u,m=mu,s=sigma),"\n",sep="")

}

# pnorm indirectly gives the probability that u < x

cat("\nRight test:\n")

for ( u in valist ) {

cat("Under H0, P(",u,"<x) = 1 - F(",u,") = ",1-pnorm(u,m=mu,s=sigma),"\n",sep="")

}

# pnorm indirectly gives the probability that u1 < x < u2

cat("\nInside interval:\n")

for ( i in 1:(length(valist)-1) ) {

u1 = valist[i]

for ( j in (i+1):length(valist) ) {

u2 = valist[j]

cat("Under H0, P(",u1,"<x<",u2,") = F(",u2,") - F(",u1,") = ",

pnorm(u2,m=mu,s=sigma)-pnorm(u1,m=mu,s=sigma),"\n",sep="")

}

}

B.B. (MMA / SBR) Stats with R June 1, 2021 17 / 72



The normal law Cumulative Density Function

Some rules of thumb
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The normal law Cumulative Density Function

Example of application
The size of one year old Cerastoderma edule follows a normal law
with Þ = 11.45mm ; ã = 2.86mm1.
We find a shell which seems to be a young C. edule,
and we measure its size: S = 17mm.
Is our specimen too large to be a young C. edule?
muA = 11.45 ; sigmaA = 2.86

siz = 17

cat("H0 : the measured size is not too big for a young C. edule.\n")

pv = 1 - pnorm(siz, m = muA, s = sigmaA)

cat("p-value =",pv,"; ")

alpha = 0.05

if(pv < alpha) {

cat("H0 can be rejected")

} else {

cat("One cannot reject H0")

}

cat(" with an accepted risk Ó =",alpha,"\n")

1 inspired by S.D. Jayakar (1962), Cah. Biol. Mar. 3, 129–136.
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Sampling Normal

Sampling in the normal law
# Draw one random value with p.d.

# following the normal law

mu = 218

sd = 10

# Only once

val <- rnorm(1,m=mu,s=sd)

cat("\nExample of random value:\n")

cat("X7→N(Þ =",mu,",ã =",sd,") v =",val,"\n")

# Draw many random values with p.d.

# following the normal law

mu = 218

sd = 10

n = 7500

listx <- rnorm(n,m=mu,s=sd)

cat("\n",n,"random values:\n")

cat("mean = ",mean(listx),"\n")

No surprise: x̄→ Þ and s→ ã
No surprise: Þ̂ ≈ x̄ and ã̂ ≈ ã
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Sampling not Normal

Let us define a new law: the RC law
rc <- function(nb) {

x=c()

rl=sample(c(1,2,3),size=nb,replace=T)

for(r in rl) {

if(r==1){

x=c(x,rnorm(n=1,m=30,s=8))

}

if(r==2){

x=c(x,rnorm(n=1,m=44,s=2))

}

if(r==3){

x=c(x,100-62*abs(rnorm(n=1,m=0,s=0.5)))

}

}

x

}

n = 7500

listx <- rc(n)

hist(listx,breaks=25,col="aquamarine4",

main=paste(n,"random numbers according to RC"),

xlab="x",ylab="Frequency by interval",

sub=paste("mean =",round(mean(listx),2),"s.d. =",round(sd(listx),2))

)

abline(v=listx,col=adjustcolor("aquamarine4",alpha=0.01),lwd=2)

abline(v=mean(listx),col="red",lwd=2)
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Sampling Sample size and convergence

Small samples

Same Þ = 50.05 and ã = 22.31

Normal Law

etc. →m = x̄ and s for each sample

m̄ = 49.99; sm = 9.59 s̄ = 21.00; ss = 7.71

RC Law

etc. →m = x̄ and s for each sample

m̄ = 49.52; sm = 10.46 s̄ = 20.25; ss = 7.71

B.B. (MMA / SBR) Stats with R June 1, 2021 22 / 72



Sampling Sample size and convergence

Convergence of X̄

x̄→ Þ sX̄ → 0

Increasing sample size : Central Limit Theorem

lim
n→+∞

X̄ = NÞ,ã/
√
n

Þ̂ = x̄
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Sampling Sample size and convergence

Convergence of S̄

s̄→
√

n−1
n ã sS̄ → 0

Whatever the sample size :

ã̂ =

√
n

n −1
s
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Sampling Sample size and convergence

Confidence Interval
Question2: How credible is a parameter estimate?

Example: dry weight of
Ophiothrix fragilis females n = 161,m = 696.00 mg,s = 134.23 mg.

Estimates for the population:

Þ̂ =m ã̂ = s

√
n

n −1
= 134.65 mg

Confidence interval at 95%, i.e. Ó = 0.05

Þ̂± uÓ/2
ã
√
n

# Measures

nOf = 161

mOf = 696.00

sOf = 134.23

# Estimates for the population

muOf = mOf

siOf = sOf * sqrt(nOf/(nOf-1))

# Confidence interval

alpha = 0.05

rnglo = qnorm(alpha/2,muOf,siOf / sqrt(nOf))

rnghi = qnorm(1-alpha/2,muOf,siOf / sqrt(nOf))

cat("Confidence interval at 95%: [",rnglo,":",rnghi,"]\n")

2 Inspired by A. Lefebvre, D. Davoult, F. Gentil, M. A. Janquin (1999) Hydrobiologia 414:25–34.
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Sampling Sample size and convergence

Laws and sample size: the sample, that’s simple
Normal Law Abnormal Law

Small sample

X̄ 7→ Þ+ ã√
n
× tn−1df No rule

Large sample

X̄ 7→ NÞ,ã/
√
n X̄ 7→ NÞ,ã/

√
n
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Sampling Sample size and convergence

Student’s Law
valist <- seq(-5,5,length.out=200)

d = 2 # degree of freedom

plot(valist,dt(valist,df=d),type="l")

Student’s law is like a Normal law with heavy tails (for small d.f.)
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Testing one sample against a normal population

Example of application
The biomass of green algae in an estuary is known to follow a normal law with
Þ = 3906 g/m2; ã = 599 g/m2.
We suspect a pollution to increase this mass.
We perform 10 measures and obtain the data in file MassAlg01.tab

Should we confirm that the mass has been increased ?

# Under H0, the sample follows the normal law of the population:

cat("H0 : mass does not exceed the usual norm.\n")

muA = 3906 ; sigmaA = 599

# Observed data:

massalg <- read.table("MassAlg01.tab",header=F)

nbmes = nrow(massalg)

measM = mean(massalg$V1)

cat("Mean mass on",nbmes,"measures:",round(measM,2),"\n")

plot(density(massalg$V1),main="Algal mass") # Rather nice, but not so rigorous

# Under H0, (X̄-Þ)/(ã/√n) 7→ t(n-1 df)

alpha = 0.05

pv = 1-pt((measM-muA)/(sigmaA/sqrt(nbmes)),df=nbmes-1)

cat("p-value =",pv,"; ")

if(pv<alpha) {

cat("we can reject H0")

} else {

cat("we cannot reject H0")

}

cat(" with a type I error risk Ó =",alpha,"\n\n")
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Testing one sample against a normal population

Two changes

What if ã is not known?
If we do not know ã, we replace it by our estimate: ã̂ = s

√ n
n−1

Warning ! R computes sd with (n −1) so, it is in fact ã̂!
cat("The standard deviation for the sample is : s =",

sd(massalg$V1)*sqrt((nbmes-1)/nbmes),"\n")

estimsig = sd(massalg$V1)

cat("The estimated population s.d. is", estimsig,"\n")

# recompute p-value using this estimate

pv = 1-pt((measM-muA)/(estimsig/sqrt(nbmes)),df=nbmes-1)

cat("Using this estimate, we find p-value =",pv,"\n")

What if we are lazy?
Use The R implementation of the t test!
cat("\n[R] : function t.test\n")

tt <- t.test(massalg$V1,mu=muA,alternative="greater")

print(tt)
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Testing two samples

The real experimental situation
In real experiments, we usually have two (or more) samples to compare

Example: ÞA = 35; ãA = 6; ÞB = 27; ãB = 9
Two samples and their difference

Observed xA − xB = 7.51 sxA−xB = 10.67

Expected ÞxA−xB = ÞA −ÞB = 8 ãxA−xB =
√
ã2A + ã2

B = 10.82
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Testing two samples

Distribution and field of application
xA − xB and xA − xB have the same mean and s.d., so how to choose?

xA − xB can be computed for unpaired samples, even if nA , nB

xA − xB 7→ (ÞA −ÞB ) +

√
ã2A
nA

+
ã2B
nB
× tnA−1+nB−1

Usually we do not know ãA and ãB :

ã2A
nA

+
ã2B
nB
≈ (nAs

2
A + nBs

2
B )×

1/nA +1/nB
nA + nB −2

xA − xB is good for pairwise differences (thus nA = nB = n)

xA − xB 7→ (ÞA −ÞB ) +

√
ã2A + ã2

B

n
× tn−1

Usually we do not know ãA and ãB :

ã2A + ã2
B

n
≈

s2A + s2B
n −1
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Testing two samples

Application: t for two
Nitrite concentration in Ulva strains from
(N) Normal and (G) Green tide areas3

H0: areas are samples out of one common Ulva population, ÞN = ÞG
nit <- read.table("NitriteGreenTide.tab",header=T,sep="\t")

attach(nit)

boxplot(Nitrite~cond, main="Nitrite upon Green Tide",xlab="Condition",

ylab=expression(paste("[Nitrite] (",mg.g[DW]^{-1},")")))

# Compute everything

nN = length(Nitrite[type=="Normal"])

mN = mean(Nitrite[type=="Normal"])

sN = sd(Nitrite[type=="Normal"])*sqrt((nN-1)/nN)

nG = length(Nitrite[type=="Green tide"])

mG = mean(Nitrite[type=="Green tide"])

sG = sd(Nitrite[type=="Green tide"])*sqrt((nG-1)/nG)

De = sqrt((nN*sN**2+nG*sG**2)*(1/nN+1/nG)/(nN+nG-2))

# Bilateral test

pv=2*pt(-abs(mN-mG)/De,df=nN+nG-2)

cat(" Difference = ",mN-mG,"; ß = (nN - 1) + (nG -1) = ",nN-1+nG-1,"\n",sep="")

cat(" p-value =",pv,"\n")

# Another, less fun, code

t.test(Nitrite~type,var.equal=T)

3 A. Fort, C. Mannion, J.M. Fariñas-Franco, R. Sulpice (2020) Sci. Tot. Envir. 698 134337
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Testing differences: always more data

Why experimentalists hate statisticians

We cannot change
anything to

ÞA, ÞB , ãxA , ãxB

The only parameter
we can tune:

ã x̄ =
ãx√
n

Increasing n
decreases dispersion

of means
⇔

The larger n, the best
we see (small) effects

⇔
More bench required!
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Testing paired samples

Improve your power by using the pairing information
Example: Genotypic diversity in Agarophyton chilense4

Question: Effect on growth rate (supposed normally-distributed)?
sgrdata <- read.table("SGR_Chaica.tab",header=T)

attach(sgrdata)

summary(sgrdata[,2:3])

# default: unpaired

cat("\nNot taking pairs into account:\n")

cat(" Difference of means =",mean(T1G)-mean(T4G),"\n")

t.test(T1G,T4G,var.equal=T)

# actually, measures on the same genotype => paired

cat("\nTaking pairs (Genotypes) into account:\n")

cat(" Mean difference =",mean(T1G-T4G),"\n")

t.test(T1G,T4G,var.equal=T,paired=T)

# draw

boxplot(T1G,T4G,col=c("purple","orange"),

main="Genetic diversity and growth rate",

xlab="Diversity",ylab="Specific Growth Rate (%/day)",

names=c("1 genome","4 genomes") )

See the difference? (Hint: pay attention to the df)
4 Data dishonestly extracted from S. Usandizaga, A.H. Buschmann, C. Camus, J.L. Kappes,

S. Arnaud-Haond, S. Mauger, M. Valero and M.L. Guillemin (2019) Evol. Appl. 00:1–13.
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Testing variance

How do we know if variances are equal?
Fisher:

One population with variance ã2

Two samples with variance s2A and s2B
Compute the law for

s2A
s2B
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Testing variance

Example

muA = 60 ; muB = 55

sigmA = 3 ; sigmB = 6

nA = 12 ; nB = 15

listA <- rnorm(nA, m=muA, s=sigmA)

listB <- rnorm(nB, m=muB, s=sigmB)

mA = mean(listA)

mB = mean(listB)

sA = sd(listA)

sB = sd(listB)

cat("sA =",sA,"; sB =",sB,"; F =",(sA/sB)**2)

# Bilateral test

pv = 2 * pf((sA/sB)**2, df1=nA-1, df2=nB-1)

cat(" p-value =",pv,"\n")

# Too easy

cat("\n[R] : function var.test\n")

var.test(listA, listB) # test F, same p-value as var.test(listB, listA)
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Testing variance

So, if variances are not equal?
Welch:

ã̂A and ã̂B → ã2 =
ã̂2A
nA

+
ã̂2B
nB

change the degree of freedom to something complicated
ß < nA + nB −2 and ß→ nA + nB −2 when sA→ sB

cat("Welch correction\n")

sA = sd(listA)

sB = sd(listB)

nu = (sA**2/nA+sB**2/nB)**2/(sA**4/(nA**2*(nA-1))+sB**4/(nB**2*(nB-1)))

cat("Estimates of ãA and ãB :",sA,"and",sB,"; ß =",nu,"\n")

De = sqrt((sA**2/nA+sB**2/nB))

pv = 2*pt(-abs(mA-mB)/De,df=nu)

cat("Difference =",mA-mB,"; p-value =",pv,"\n")

# Create Names and Vals as vectors

Names <- c(rep("A",length(listA)),rep("B",length(listB)))

Vals <- c(listA,listB)

t.test(Vals~Names,var.equal=F)

boxplot(Vals~Names,col=c(rgb(1,0,0,0.25),rgb(0,0,1,0.25)),

main="Effect of a sodium Somethingate treatment",

xlab="Condition",ylab="Measure (A.U.)"

)
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Testing more than two samples

Comparing more than two samples
Example: effect of (S)-roscovitine on metabolic parameters in rats5.

Body temperature for 4 conditions,
with 11 ≤ n ≤ 13

Untreated Vehicle (S)-Roscovitin (S)Roscovitin 10 mg/kg/h
(Control) Pre-occlusion Post-occlusion

38.9 38.8 37.9 38.7
38.7 38.8 38.5 38.6
38.6 38.3 38.2 38.5
38.8 38.5 38.3 39.0
38.9 38.1 38.3 38.9
38.8 38.8 38.7 38.3
38.9 38.5 38.3 38.6
38.8 38.4 38.3 38.4
38.9 38.6 38.2 38.6
38.7 38.4 38.1 38.7
38.8 38.6 38.3 38.5
38.9 38.6 38.4

38.4

First idea: One test for each pair of conditions

# Read data

neurokin <- read.table("Neurokin_01.tab",header=T)

attach(neurokin)

# Plot

boxplot(neurokin)

#perform all 6 tests

t.test(Untreated,Vehicle)

t.test(Untreated,SRoscoPre)

t.test(Untreated,SRoscoPost10)

t.test(Vehicle,SRoscoPre)

t.test(Vehicle,SRoscoPost10)

t.test(SRoscoPre,SRoscoPost10)

5 Data reconstructed from
B. Menn, S. Bach, T. Blevins, M. Campbell, L. Meijer, S. Timsit (2010) PLoS ONE 5(8) e12117.
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Testing more than two samples

Interlude: reshaping data
Some functions require an appropriate data format.

"wide" format
Untreated Vehicle SRoscoPre SRoscoPost10

38.9 38.8 37.9 38.7
38.7 38.8 38.5 38.6
38.6 38.3 38.2 38.5
38.8 38.5 38.3 39.0
38.9 38.1 38.3 38.9
38.8 38.8 38.7 38.3
38.9 38.5 38.3 38.6
38.8 38.4 38.3 38.4
38.9 38.6 38.2 38.6
38.7 38.4 38.1 38.7
38.8 38.6 38.3 38.5
38.9 38.6 38.4

38.4

From wide to long:
neuroCT <- stack(neurokin)

neuroCT <- neuroCT[!is.na(neuroCT$values),c(2,1)]

colnames(neuroCT) <- c("Condition","Temperature")

or:
library(reshape2)

neuroCT <- melt(neurokin,variable.name="Condition",

value.name="Temperature",id=NULL,na.rm=T)

"long" format
Condition Temperature

1 Untreated 38.9
2 Untreated 38.7
3 Untreated 38.6
... ... ...

10 Untreated 38.7
11 Untreated 38.8
12 Untreated 38.9
14 Vehicle 38.8
15 Vehicle 38.8
16 Vehicle 38.3
... ... ...

24 Vehicle 38.6
25 Vehicle 38.6
26 Vehicle 38.4
27 SRoscoPre 37.9
28 SRoscoPre 38.5
29 SRoscoPre 38.2
... ... ...

35 SRoscoPre 38.2
36 SRoscoPre 38.1
37 SRoscoPre 38.3
40 SRoscoPost10 38.7
41 SRoscoPost10 38.6
42 SRoscoPost10 38.5
... ... ...

49 SRoscoPost10 38.7
50 SRoscoPost10 38.5
51 SRoscoPost10 38.4
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Testing more than two samples

Performing many t-test is pleasurable, but...
1 H0 should be: "All samples are drawn out of the same population"
⇒ same ã for all conditions
but : each t-test computes its own ã̂

p value over- or under-estimated, depending on ã̂ i j vs ã
2 p value says how probable are the data under H0

but : each t-test computes how probable is its own subset of two samples
I Risk Óp = 0.05 : error on 1 pairwise test
I ⇒ Pp = 1−Óp = 0.95 for each pairwise test to be correct
I 6 simultaneously correct tests: PM = P6p = (1−Óp)6 ≈ 0.735
I ⇒ we accept a risk ÓM ≈ 0.265 of error for the whole analysis... do we?

Rule: pairwise p values must be adjusted for multiple testing

# Read data

neurokin <- read.table("Neurokin_01.tab",

header=T)

attach(neurokin)

# Re-format data

stneu <- stack(neurokin)

stneu <- stneu[!is.na(stneu$values),c(2,1)]

colnames(stneu) <- c("Condition","Temperature")

#perform all 6 tests

pairwise.t.test(stneu$Temperature,

g=stneu$Condition)
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Testing more than two samples

Analysis Of Variance
Reminder: under H0,

The variation of mean between classes is not higher than
the mean of variation within each class

N =
k¼
j=1

nj M =
1
N

k¼
j=1

nj¼
i=1

xi ,j

Mean for each class:

mj =
1
nj

nj¼
i=1

xi ,j

Variance due to Factor:

S2F =
1

k −1

k¼
j=1

nj (mj −M)2

Variance within each class:

s2j =
1

nj −1

nj¼
i=1

(xi ,j −mj )
2

Intrinsic variance:

S2I =
1

N − k

k¼
j=1

(nj −1)s2j

Hence the question: is S2
F significantly larger than S2

I ?
Hence the question: how do we compare variances?
Hence the answer: with a Fisher test.
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Testing more than two samples

Let’s write some code!
neurokin <- read.table("Neurokin_01.tab",header=T)

# convert to long format

stneu <- stack(neurokin)

stneu <- stneu[!is.na(stneu$values),c(2,1)]

colnames(stneu) <- c("Condition","Temperature")

attach(stneu)

# basic numbers

N = nrow(stneu)

co = levels(Condition)

k = length(co)

M = mean(Temperature)

# loop to sum into S2F and S2I

S2F = 0

S2I = 0

for (j in 1:k) {

xj <- stneu[stneu[,1]==co[j],2]

nj = length(xj)

S2F = S2F + nj / (k-1) * ( mean(xj) - M ) ** 2

S2I = S2I + (nj-1) / (N-k) * var(xj)

}

# perform a Fisher test

Ffi = S2F/S2I

cat("k =",k," N =",N," k-1 =",k-1," N-k =",N-k,"\n")

cat("S2b =",S2F," S2w =",S2I," Ffi =",Ffi,"\n")

pv <- 1 - pf(Ffi, df1=k-1, df2=N-k)

cat("p-value for AnOVa test: p =",pv,"\n\n")

Let’s avoid writing
so much code!
# use the R function aov

summary(aov(Temperature ~ Condition))
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Testing more than two samples

What we learn from a one-way AnOVa
A typical one-way AnOVa test:

Choose Ó

H0: All samples come from the same population
distibuted according to the same Normal law:
Þ1 = Þ2 = ... = Þk , ã1 = ã2 = ... = ãk

Compute F = S2
F /S

2
I , then p

I if p > Ó, then H0 cannot be rejected
⇒ No effect can be demonstrated for the factor

I if p < Ó, then H0 must be rejected
⇒ (provided normality and homeosedasticity hold)
The factor affects Þ, at least between two classes

One-way AnOVa test does not tell us which classes differ!
To discover where is/are the difference(s):
neurAOV <- aov(Temperature~Condition)

TukeyHSD(neurAOV)

The Tukey’s "post-hoc" test is similar to the pairwise t-test
with p-value correction = "Honnest Significant Difference" ( ≈ Bonferroni).
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Testing normality

Testing normality
Is a given sample likely to have been drawn out of a Normal law ?

Skewness Kurtosis Shapiro-Wilks

S =
1
n

´n
i=1(xi−x̄)

3( 1
n

´n
i=1(xi−x̄)

2
)3/2 K =

1
n

´n
i=1(xi−x̄)

4( 1
n

´n
i=1(xi−x̄)

2
)2 W =

(
1
n

´n
i=1 ai x(i)

)2
1
n

´n
i=1(xi−x̄)

2
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Testing normality

Testing normality
Is a given sample likely to have been drawn out of a Normal law ?

Indices: for Normal law, skewness = 0; kurtosis = 3
Example: Gene expression level

library(moments) # provides skewness an kurtosis

# Is gene expression level likely to follow a normal law?

glev <- read.table("GeneLevel.tab",header = T)

hist(glev$Level,main="Gene expression level distribution",

breaks=30,xlab="Expression level",freq=F)

cat(" Skewness =",skewness(glev$Level),"\n")

cat(" Kurtosis =",kurtosis(glev$Level),"\n")

stgl = shapiro.test(glev$Level)

cat(" p-value for Shapiro-Wilk test =",stgl$p.value,"\n")

# Is gene expression level likely to follow a log-normal law?

Loglev <- log(glev$Level)

hist(Loglev,main="log of gene expression level distribution",

breaks=30,xlab="Log(expression level)",freq=F)

cat("\nLog(gene expression level)\n")

cat(" Skewness =",skewness(Loglev),"\n")

cat(" Kurtosis =",kurtosis(Loglev),"\n")

stlgl = shapiro.test(Loglev)

cat(" p-value for Shapiro-Wilk test =",stlgl$p.value,"\n")

skew = 3.19, kurt = 17.8
SW test: p = 1.4−39

skew = -0.013, kurt = 2.8
SW test: p = 0.70
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Testing normality

Testing normality
Is a given sample likely to have been drawn out of a Normal law ?
Example: convergence of Student’s law to the Normal when ß increases
listn <- rnorm(n=2000)

for ( d in c(1,5,30,100) ) {

listt <- rt(n=2000,df=d)

qqplot(listn,listt,xlim=c(-5,5),ylim=c(-5,5),pch=16,col=rgb(0.8,0.1,1,0.2),

main="Convergence of t to N",

ylab=substitute(paste("Sample of t,",nu,"=",n,"; n = 2000"),list(n=d)),

xlab="Sample of Normal law, n=2000",

)

abline(0,1,col="blue")

st = shapiro.test(listt)

cat("ß =",d,"p-value for Shapiro-Wilk test =",st$p.value,"\n")

}

ß = 1 ß = 5 ß = 30 ß = 100
p = 9.4×10−70 p = 3.2×10−16 p = 3.5×10−4 p = 0.96
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Testing normality

Warning

For nearly normal laws, Shapiro-Wilk test result depends on sample size
# create functions for Student law

# ... with ß = 20

t20 <- function(n) {rt(n,df=20)}

# ... with ß = 50

t50 <- function(n) {rt(n,df=50)}

# Change sample size

for(ss in c(10,30,100,1000,5000)){

cat(sprintf(" %4d ",ss))

for(law in c(rlnorm,t20,t50,rnorm)) {

pv<-c()

for(i in seq(1,2000)){

x<-law(n=ss)

pv<-c(pv,shapiro.test(x)$p.value)

}

# Proportion of normality rejection

cat(sprintf(" %.3f ",

length(pv[pv<0.05])/length(pv)))

}

cat("\n")

}

Proportion of normality rejection
sample log-N Student Normalsize n ß = 20 ß = 50

10 0.594 0.058 0.053 0.043
30 0.995 0.081 0.064 0.043

100 1.000 0.111 0.077 0.043
1000 1.000 0.400 0.117 0.046
5000 1.000 0.942 0.260 0.036

Expected ← Reject→ ← Accept→
Actual ≈ OK depends on n OK
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Testing non-normal variables

Poisson law for fishermen
A fisherman can catch 0 or 1 fish every minute.
The probability to catch 1 fish during 1 minute is Ô = 1/12
(he catches on average 1 fish every 12 minutes).
We observe him for Ét = 30 min.

What is the probability he catches k = 3 fishes?

Poisson law of parameter Ý = ÔÉt : PÝ(n = k) = Ýk

k! e−Ý

PÝ : Þ = Ý;ã2 = Ý

Ý = ÔÉt = 30/12 = 2.5 fishes during 30 min;
P2.5(n = 3) = 2.53/3!× e−2.5 ≈ 0.214

# Poisson probability of 3 with Ý = 30/12

dpois(3, lambda = 30/12)

# Plot

k = 0:9

barplot(dpois(k, lambda = 30/12), col = "salmon",

main = "Poisson Law for fisherman",

xlab = "k", ylab = "P(n=k)"

)
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Testing non-normal variables

Poisson law for molecular biologists
GAATTC can occur 0 or 1 time at any position in DNA.
The probability that a 6-mer is GAATTC is Ô ≈ 1/46 = 1/4096
(GAATTC occurs on average 1 time every 4096 bases).
We observe a sequence of length l = 10 kb.

What is the probability we find k = 3 occurrences of GAATTC in l?

Poisson law of parameter Ý = Ô l : PÝ(n = k) = Ýk

k! e−Ý

PÝ : Þ = Ý;ã2 = Ý

Ý = Ô l = 10000/4096 ≈ 2.4414 cuts in 10 kb;
P2.4414(n = 3) = 2.44143/3!× e−2.4414 ≈ 0.211

# Poisson probability of 3 with Ý = 10000/4096

dpois(3, lambda = 10000/4096)

# Plot

k = 0:9

barplot(dpois(k, lambda = 10000/4096), col = "slateblue",

main = "Poisson Law for EcoRI",

xlab = "k", ylab = "P(n=k)"

)
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Testing non-normal variables

Poisson law for NGS
1 read can match on 0 or 1 expressed mRNA (kind of wishful thinking).
The probability that this read matches mRNA m is Ô = lmnm/Îlini
(Proportion of nucleotides in m among nucleotides in transcriptome).
We observe a pool of Nr = 10 millions reads.

Assume
5000 expressed genes with average: length = 2kb, number = 800
⇒ Îlini = 5000×2000×800 = 8×109 nucleotides.
messenger m is lm = 2.5kb long, and is expressed nm = 600times
No expression level variability⇒ technical replicates
⇒ Ô = 1.875×10−4⇒ Ý = ÔNr = 1875 read counts.

# Plot

k = 1700:2050

barplot(dpois(k, lambda = 1875), col = "forestgreen",

main = "Poisson Law for NGS",

xlab = "k", ylab = "P(n=k)"

) # ... hmm, this looks like a normal law!

# Compare two technical replicates: same Ý?
poisson.test(c(1948,1843)) # does not know Ý=1875
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Testing small samples of unknown distribution

Wilcoxon W test: principle
Consider two independent samples selected from populations...

with the same distribution

sample A sample B
54 90 56 22 73 49 79 85 40 20

26 17 25 50 67 12 72 10 28 53

Merge and order
10 12 17 20 22 25 26 28 40 49
50 53 54 56 67 72 73 79 85 90

Forget values
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Sum ranks
WA =

´
rA −

´nA
i=1 i = 96−45 = 51

WB =
´

rB −
´nB

i=1 i = 114−66 = 48

with different distributions

sample A sample B
84 80 90 75 71 33 82 22 81 50

79 87 72 89 37 44 78 42 40 10

Merge and order
10 22 33 37 40 42 44 50 71 72
75 78 79 80 81 82 84 87 89 90

Forget values
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Sum ranks
WA =

´
rA −

´nA
i=1 i = 131−45 = 86

WB =
´

rB −
´nB

i=1 i = 79−66 = 13

Under H0 = samples A and B are issued from the same law:
W 7→Wilcoxon−Mann−Whitney law

(
E = nAnB

2 ;V = nAnB (nA+nB+1)
12

)
E = 49.5;V = 173.25;

√
V = 13.16

p = 0.94 p = 4.24×10−3

B.B. (MMA / SBR) Stats with R June 1, 2021 51 / 72



Testing small samples of unknown distribution

Example: shaking oysters

Question:
Does a mechanical stress change Oyster’s survival to microbial infection?

Method6:
Infect, then leave alone or shake 5 min on Day 3; count mortality on Day 9.

But: Only 4 replicates, no clue about how survival distibutes.

# Read data

od <- read.table("OysterDeath.tab",header=T)

attach(od)

#perform the test

wilcox.test(Mortality~Cond)

nA = length(Mortality[Cond=="ChalNoStress"])

nB = length(Mortality[Cond=="Chal5mStress"])

cat("E(W) =",nA*nB/2,"\n")

6 Inspired by A. Lacoste, F. Jalabert, S.K. Malham, A. Cueff, S.A. Poulet (2001)
Appl. Envir. Microbiol. 67:5 2304–2309.
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Testing ç2

Testing numbers of individuals - Scheme
Population (∞) Sample N=300

Class Proba Expected Sample ç2
i

i pi ei = Npi si
(si−ei )2

ei
0.052 15.6 18 0.3692
0.097 29.1 29 0.0003
0.076 22.8 17 1.4754
0.099 29.7 37 1.7943
0.144 43.2 45 0.0750
0.064 19.2 21 0.1688
0.167 50.1 43 1.0062
0.033 9.9 10 0.0010
0.160 48.0 49 0.0208
0.108 32.4 31 0.0605´

i 1.000 300 300 4.9716
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Testing ç2

Testing numbers of individuals - Computations
The population P splits into b classes with proportions pi , so that

b́

i=1
pi = 1

We take one sample S of size N out of this population
How does the distribution among classes differ from the expected one?

Expected: ei = Npi

b values→ 1 indicative value: ç2 =
b́

i=1

(si−ei )2
ei

N.B. ß = b −1; the ç2 law does NOT depend on N!
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Testing ç2

Example
In an area, 5 protostomia species are known to represent (in %):
Pseudonereis variegata Octomeris angulosa Tetraclita serrata Patella granularis Perna perna

56 25 9 7 3

On one beach in this area, we count:
Pseudonereis variegata Octomeris angulosa Tetraclita serrata Patella granularis Perna perna

298 149 61 32 29

Is this unexpected?
cat("\nç2 test: conformity to a known distribution\n")

pr <- c(0.56,0.25,0.09,0.07,0.03) # sum = 1.00

spcnt <- read.csv("SpeciesCounting.csv",header=T)

attach(spcnt)

cat("H0: the sample comes from the population\n")

# Compute expected numbers

expnb = pr * sum(sample1)

# Compute ç2 and p-value

cX2 = 0

for ( i in 1:length(pr) ) {

cX2 = cX2 + (sample1[i]-expnb[i]) ** 2 / expnb[i]

}

pv = 1 - pchisq(cX2,df=length(pr)-1) # We want P(ç2 > cç2)

cat(" ç2 =",cX2,"\np-value =",pv,"\n")

# Less fun

chisq.test(sample1,p=pr)
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Testing ç2

ç2 to test for independance
We want to compare three countries for the repartition of algae7

Data:
Country Green Red Brown
France 121 403 183
Great Britain 109 347 183
Spain 94 365 155

But:
We have no proportions from
a reference population
→ How can we compute
expected counts?

Hypothesis H0: Algal group and Countries are independant factors.

⇒ P(Ci & G j ) = P(Ci )× P(G j ) =
nCi

Ntot ×
nG j
Ntot

;Expi j = Ntot × P(Ci & G j )

Marginal sums and expected counts
C. Green Red Brown Sum
Fr 116.87 402.20 187.93 707
GB 105.63 363.51 169.86 639
Sp 101.50 349.29 163.21 614
Sum 324 1115 521 1960

XXXXXXN.B. ß = (l −1)(c −1) = 4df

ç2 =
ĺ

i=1

ć

j=1

(obsi j−expi j )2
expi j

spfr <- c(121,403,183)

spgb <- c(109,347,183)

spes <- c( 94,365,155)

macroa <- matrix(c(spgb,spes,spfr),

byrow=T,nrow=3)

chisq.test(macroa) # matrix, no p=...

7 Data from T. Burel, M. Le Duff, E. Ar Gall (2019) Cah. Natur. Obs. Mar. VII:1, 1–38.
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Testing ç2

ç2 or not ç2: GO-term enrichment
Among 30 genes, of which 8 belong to GO-term G1, we find
10 significantly up-regulated, of which 6 belong to G1

Is the UP pool enriched in GO-term G1?

Contingency table approach:

UP EQ Îc
G1 6 2 8
Gx 4 18 22
Îl 10 20 30

gomat <- matrix(c(6,4,2,18),nrow=2)

rownames(gomat) <- c("G1","Gx")

colnames(gomat) <- c("UP","EQ")

print(gomat)

chisq.test(gomat)

We get the answer: reject H0 with p = 0.013, but:

There is a warning because of low values

ç2 says "H0 can be rejected" but not "enriched / depleted"
(We can look up for 1 GO-term, but extension to real-size analysis?)
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Testing ç2

Low-count-friendly approach: Fisher exact test
A very simple idea, indeed:

1 enumerate all possibilities: the number of G1 among 8 can be 0, 1, ..., 8
2 for each, compute the probability: how many ways to get this pattern?

under H0 = UP/EQ is independant from G1/Gx
Example for x = 6:
I Split 30 genes into 10 + 20 (all possible patterns):

Combinations of 10 genes out of 30: c0 = 30!
10!×20! = 30045015

I Split 8 genes into 6 + 2:
Combinations of 6 genes out of 8: c1 = 8!

6!×2! = 28
I Split 22 genes into 4 + 18:

Combinations of 4 genes out of 22: c2 = 22!
4!×18! = 7315

The probability for this pattern is:

p6 =
c1 × c2
c0

=
28×7315
30045015

≈ 6.817×10−3

3 sum-um all the proba of cases displaying this enrichment or more
At least as much enriched: p = Îpx≥6

p = Îpx≥6 = 7.23×10−3
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Testing ç2

Code for the GO-term enrichment test
gomat <- matrix(c(6,4,2,18),nrow=2)

rownames(gomat) <- c("G1","Gx")

colnames(gomat) <- c("UP","EQ")

print(gomat)

m = sum(gomat["G1",])

n = sum(gomat["Gx",])

k = sum(gomat[,"UP"])

c0 = choose((m+n),k) # (m+n)!/(n!m!)

x <- seq(0,m)

c1 = choose(m,x) # m!/(x!(m-x)!)

c2 = choose(n,(k-x)) # n!/((k-x)!(n-(k-x))!)

p = c1 * c2 / c0

cat("Probabilities (hypergeometric law):\n")

print(p)

cat("Sum =",sum(p),"\n")

cat("P(x≥6) =",sum(p[x>=6]),"\n")

Lazy version:
dh <- dhyper(x,m,n,k)

print(dh)

cat("Sum =",sum(dh),"\n")

cat("P(x≥6) =",sum(dh[x>=6]),"\n")

Super-lazy version:
fisher.test(gomat,alternative="greater")
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Testing linear dependance

Two variables measured on the same individuals
A and B are independant A and B are correlated

a > ā= b > b̄⇒ sA,B ≈ 0 Most often, a > ā↔ b > b̄⇒ sA,B > 0

Covariance : sA,B =
1

n −1

N¼
i=1

(a− ā)(b − b̄)
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Testing linear dependance

Properties of covariance and correlation coefficient

Covariance: sA,B = 1
n−1

´N
i=1(a− ā)(b − b̄)

An index shared by all variables, whatever their s.d. (Pearson):

rA,B =
sA,B
sAsB

sA,B = −sAsB −sAsB < sA,B < 0 sA,B = 0 0 < sA,B < sAsB sA,B = sAsB
rA,B = −1 −1 < rA,B < 0 rA,B = 0 0 < rA,B < 1 rA,B = 1
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Testing linear dependance

Properties of Pearson’s correlation coefficient

sA,B = 1
n−1

´N
i=1(a− ā)(b − b̄) rA,B = sA,B

sAsB

Under H0 = "Two uncorrelated variables":

r

√
n −2
1− r2

7→ tß=n−2

if variables are normal or sample is large.
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Testing linear dependance

Example
Correlation between location of algae, and their content in Fucose + sulfate8

Species Emersion(%) Fucose (% D.W.)
Ascophyllum nodosum 9.5 16.1
Bifurcaria bifurcata 26.8 12.6
Fucus cerranoides 63.7 22.6
Fucus serratus 30.1 10.9
Fucus spiralis 81.6 21.4
Fucus vesiculosus 49.6 17.2
Laminaria digitata 12.8 3.6
Pelvetia canaliculata 98.5 34.9

# Data

fucdat <- read.table("Fucose.tab",header=T)

attach(fucdat)

# Parameters

sde = sd(Emersion) ; sdf = sd(Fucose)

co = cov(Emersion,Fucose)

r = co/(sde*sdf)

cat("Correlation r =",r,"\n")

# Test

free = nrow(fucdat)-2

t = r * sqrt(free/(1-r*r))

# less fun

r = cor(Emersion,Fucose)

cat("Correlation r =",r,"\n")

cor.test(Fucose,Emersion,alternative="g")

# Plot

plot(Emersion,Fucose,

main="Fucose vs location",

xlab="Emersion duration (%)",

ylab="Fucose + Sulfate (%D.W.)" )

cat("p-value for positive correlation =",dt(t,df=free),"\n")

8 Data from B. Kloareg (1991), Bull. Soc. Bot. Fr. 138:3-4, 305-318.
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Testing linear dependance

Linear regression
Assuming dependance between variables makes sense...
Linear correlation means y = ax + b + × where × = "residual"
Estimates: â and b̂ for which ŷ = âx + b̂ predicts y with the lowest error.
⇒ Define error criterion: SSR =

´
n ×

2 =
´

n(y − ŷ)2

Good news: no need to try all possible values!

â = r
sy
sx

; b̂ = ȳ − âx̄

Confidence intervals:
sa = sSSR /

√´
(xi − x̄)2 Éâ 7→ satß=n−2

sb = sSSR

√´
x2i /n

´
(xi − x̄)2 Éb̂ 7→ sbtß=n−2
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Testing linear dependance

Example
How do tides impact phytoplankton biomass in Penze?9

→ Correlate chorophyl content with water level.

# Read data

chloro <- read.table ("ChloroWater.tab",

header=T)

attach(chloro)

# Check linear correlation

rc = cov(H,Chl)/(sd(H)*sd(Chl))

# Estimates for a and b

ac = rc * sd(Chl) / sd(H)

bc = mean(Chl) - ac * mean(H)

cat("Chl = ",ac," H +",bc,"\n")

# Use the linear model function

datac <- data.frame(chloro)

regc <- lm(Chl~H,datac)

cat("Regression coefficients:\n")

print(regc$coef)

cat("Confidence interval:\n")

confint(regc,level=0.95)

# Plot

minh=1.5

maxh=5.0

minc=1.0

maxc=3.0

plot(Chl~H, pch=20, col="darkgreen",cex=3,

main="Diurnal variations",

xlim=c(minh,maxh),ylim=c(minc,maxc),

xlab="Water H (m)",ylab="Chlorophyl (Þg/l)")
lines(c(minh,maxh),c(ac*minh+bc,ac*maxh+bc),

col="blue",lwd=3)

text(minh,minc+0.15,pos=4,

sprintf("a=%.3f b=%.3f\nSSR = %.4f",ac,bc,SSRc))

cat(" Regression residuals:\n")

print(regc$residuals)

SSRc = sum(regc$residuals**2)

cat(" SSR =",SSRc,"\n")

9 Data from C. Riaux and J.L. Douvillé (1980), Estuar. Coast. Mar. Sci 10, 85-92.
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Testing linear dependance

Correlation and prediction
Regression = modeling the relation between x and y

Regression =⇒ knowing x, predict y as ŷ = âx + b̂

BUT uncertainty Éâ and Éb̂⇒ Éŷ

Éŷ 7→

sSSR
√

1
n
+

(x − x̄)2´
(xi − x̄)2

 tß=n−2
N.B. the more x differs from x̄, the highest Éŷ

# Prediction

alpha = 0.05

askx <- c(1.8,3.2)

ansy <- predict(regc,data.frame(H=askx),

level=1-alpha,interval="confidence")

cat("H =",askx[1],"-> predicted Chl =",ansy[1,"fit"],

"95% interval: ",ansy[1,"lwr"],"< Chl <",ansy[1,"upr"],"\n")

cat("H =",askx[2],"-> predicted Chl =",ansy[2,"fit"],

"95% interval: ",ansy[2,"lwr"],"< Chl <",ansy[2,"upr"],"\n")
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Testing linear dependance

Predict Y vs predict X
Regression = modeling the relation between x and y as y = ax + b

Regression =⇒ knowing x, predict y for x within a reasonable range.
Regression =⇒ knowing y, predict x?

y = ax + b ⇔ x =
1
a
y − b

a

or :

x = a′y + b′ a′ =
1
a
; b′ = −b

a

But, as X and Y are symmetric:

â = r
sy
sx
⇔ â′ = r

sx
sy

So:

â′ , 1/ â ... unless r = 1!
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Testing combined effects

More than one factor

i A B C X
1 A1 B1 C1 X1
2 A2 B2 C2 X2
3 A3 B3 C3 X3
...

Question:
does the value of X depend on...

factor A?

factor B?

factor C?

an interaction between A and B?

an interaction between A and C?

...?

Model: for each individual i ,

Xi = aAi + bBi + cCi +X0 + ×i

Problem 1:
knowing Ai , Bi , Ci for all i ,
estimate a, b, c, X0 so that
the Xi are well predicted by:

X̂i = âAi + b̂Bi + ĉCi + X̂0

⇔´
×2i is minimal

Problem 2:
Which factor(s)
display(s) a significant influence?
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Testing combined effects

Simple answers

Answer to problem 1 = find coefficients:

Simply use linear regression: lm can cope with multiple factors

multimodel <- lm( X ~ A + B + C )

Answer to problem 2 = effect of each factor:

Simply use AnOVa: anova can cope with multiple factors

anova(multimodel)

Bonus = combined effect of factors:

Simply replace + by *

combomodel <- lm( X ~ A * B * C )

anova(combomodel)
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Testing combined effects

A real, thus less simple, situation
Factors having an effect on brown alga fecundity10.

Question: how does fecundity depend on the three following factors:

species considered = Laminaria ochroleuca, Sacchoriza polyschides ;

water temperature = 10°C, 15°C, 25°C ;

time = 0, 2, ... , 26 days

→ How about something like: AlFec <- lm(Fec ~ Spe * Tmp * Day)

anova(AlFec)

Problem: Temperature and Time are quantitative,
Problem: Species are qualitatitive (categories)
Solution: Turn all variables to qualitative, i.e. factors!

fectbl <- read.table("SpeDayTmpFec.tsv",header=T)

fectbl[,1:3] <- lapply(fectbl[,1:3],as.factor)

model <- aov(Fec ~ Spe * Day * Tmp, data = fectbl)

summary(model)

Bonus: because model is made by aov – not lm – post-hoc test applies:
TukeyHSD(model,c("Spe","Day","Tmp"))

10data very approximately reconstructed from T.R. Pereira, A.H. Engelen, G.A. Pearson, E.A.
Serrão, C. Destombe, M. Valero (2011) Cah. Biol. Mar. 52:395-403.
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Testing non-linear dependance

Non-linear parameter optimization
Example: Temperature and Bacterial Production11

Bacterial production follows a non-linear law:

BP(T) = BPmax

(
Tmax − T

Tmax − Topt

)Ô
exp

(
−Ô

(
Tmax − T

Tmax − Topt
−1

))
with BPmax , Tmax , Topt and Ô : parameters to estimate.
# create the function

metatemp <- function(temp,BPmax,Tmax,Topt,beta) {

BPmax*((Tmax-temp)/(Tmax-Topt))**beta*
exp(-beta*(((Tmax-temp)/(Tmax-Topt))-1))

}

# read data and build the data frame

tbptbl <- read.table("TempBPresp.tab",header=T)

attach(tbptbl)

databp <- data.frame(tbptbl)

# optimize parameters

opttbp <- nls(

BP~metatemp(Temp,BPmax,Tmax,Topt,beta),

data=databp,

start=list(BPmax=max(BP),Tmax=max(Temp),

Topt=27,beta=1) )

opc <- coef(opttbp)

print(opc)

# plot

tpx<-seq(2,34,length.out=100)

bpy<-metatemp(tpx,opc[1],opc[2],opc[3],opc[4])

plot(tpx,bpy,type="l",lty=2,lwd=3,col="red",

main="BP - temp. response",

xlab="Temperature (°C)",ylab="BP (mgC/m2/h)")
points(databp,pch=16,col="darkgreen",cex=2)

11 Data from C. Hubas, L.F. Artigas, D. Davoult (2007). Mar Ecol Prog Ser 344:39-48.
B.B. (MMA / SBR) Stats with R June 1, 2021 71 / 72



Conclusion Take-home graph

Workflow of statistic test
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