
Linux for
Beginners

ABiMS

Training Module 2025

Mark HOEBEKE

Jean-Michel AROUMOUGOM

Linux for Beginners | Goals

My {colleague|competitor} told me about a highly interesting tool for analysing data quite
related to mine. It’s some kind of thingy running on Lynuks and installed somewhere on a
server.

How do I:
⚫ Connect (myself) to the server?

⚫ Transfer my files holding the data on the server?

⚫ Launch the program?

⚫ Specify where to find the files with the data it will process?

⚫ Specify where to write the files with the results it will generate?

⚫ Organize all these files in folders not to get lost later on ?

⚫ Run several programs “simultaneously” (or several ”instances” of the same program)
with different parameters or input data?

⚫ Stop an instance of the program if it runs for too long?

⚫ {Share|protect} my files containing input data or results {with my colleagues|from my
competitors}?

Processes

Linux initiation | Key Concepts

Users

The File System

Run
Stop

Interrupt/Resume

Read
Write

Remove

Transfer
Read
Write

Remove
Organize

(Un)Share

Linux for Beginners | Outline

1Purpose of an Operating System – why Linux ?

2Establishing a connection and transferring files

3The Command Line Interface

4The File System

5Manipulating File Contents

6Users, Groups and Access Control

7Processes

Linux for Beginners | Outline

1Purpose of an Operating System – why Linux ?

2Establishing a connection and transferring files

3The Command Line Interface

4The File System

5Manipulating File Contents

6Users, Groups and Access Control

7Processes

Purpose of an Operating System

An OS is a “privileged” program run when the machine is switched on and that:
⚫ Loads other programs in memory (RAM),
⚫ Allocates the resources (memory, CPU time, disk space) they request,
⚫ Handles their communications (input/output) with peripheral devices (screen, keyboard, mouse,

network, printer…)
⚫ Halts their execution
⚫ Reclaims the allocated resources.

⚫ Preemptive multitasking & multi-user system

− Durability & stability with a track record back to 1994

⚫ Open-source and free (as in beer)

− Its code can be freely copied, modified and redistributed

⚫ Offering a vast software catalogue :

− Office suites : LibreOffice

− Internet tools : browsers (Firefox, Chrome), e-mail programs (Thunderbird, Evolution)

− Multimedia : audio/video playback tools (VLC, Totem)

− Graphics : image manipulation (Gimp), 3D modeling (Blender)

− Software development : languages (Python, Java, C/C++…), environments (Eclipse, IDLE, PyDev,

DDD)

⚫ Scientific disciplines included :

− Bioinformatics : blast, emboss, phylip, mafft, clustal, trimal...

Why Linux ?

Linux Distributions

The main differences between distributions are:
⚫ On a technical level :

⚫ The packaging format used to package(!) software.

⚫ The tools to administer these packages.

⚫ Business model wise :

⚫ Technical Support : community-based vs. commercial.

⚫ The licenses for the software they provide.

A Linux distribution includes:
⚫ Some flavour of the Linux kernel.

⚫ A portfolio of prepackaged software

⚫ Administration tools facilitating the installation and update

of these packages.

Linux for Beginners | Outline

1Purpose of an Operating System – why Linux ?

2Establishing a connection and transferring files

3The Command Line Interface

4The File System

5Manipulating File Contents

6Users, Groups and Access Control

7Processes

Connecting | The Terminal

The Terminal :
⚫ A means to ”communicate”with a machine relying on a command line in the

context of a session

Use Case 1 : Local Sessions
⚫ Type commands (programs) that will run (use memory, CPU and disk space) on your

workstation

Connecting | Local Sessions

Opening a local session(on a workstation running Ubuntu) :
⚫ Using the keyboard : Ctrl+Alt+T
⚫ Using the mouse:

1

2

3

Connecting | Remote Sessions

Remote Sessions :
⚫ To work on a machine accessible through the network
⚫ Potentially allowing programs running remotely to open windows on your workstation

13 /

Connecting | Remote Sessions & SSH

Using the Secure (SSH) Shell Protocol:
⚫ Encrypted (secure) communications protocol opening a channel allowing information

to be exchanged between two machines.
⚫ Requires knowledge of:

⚫ The (host)name (or network/IP address) of the remote machine,
⚫ The user name (login) on the remote machine.

Using SSH from a local terminal

jmaroumougom@slurm1.sb-roscoff.fr

login hostname

Using SSH on a Windows workstation with MobaXTerm

1

Connecting | Remote Sessions & SSH

Using SSH on a Windows workstation with MobaXTerm

Connecting | Remote Sessions & SSH

Using SSH on a Windows workstation with MobaXTerm

Connecting | Remote Sessions & SSH

File Transfer using FileZilla

Defining the connection parameters
Establishing the connection

Validating the connection

File Transfer using FileZilla

Selecting the source folder
Selecting the destination folder
Selecting the file(s) to transfer
Transfer through drag ‘n drop

File Transfer using FileZilla

File Transfer using Cyberduck

Defining the connection parameters
Establishing the connection

1

2

3

4

5

6

File Transfer using Cyberduck

Defining the connection parameters
Establishing the connection

File Transfer using Cyberduck

Transferring files with drag ‘n drop

File Transfer using GNOME/Ubuntu

Click on the “Other Locations” item

Open a File exploration window

File Transfer using GNOME/Ubuntu

Fill the textbox with the connection URL :
ssh://login@remote.server.com

Click on the connection button

File Transfer using GNOME/Ubuntu

Enter password

Acknowledge connection if asked for

File Transfer using GNOME/Ubuntu

Click on folder to view your user files

Use the ordinary copy/paste/drag/drop between local files and remote files.

Linux for Beginners | Outline

1Purpose of an Operating System – why Linux ?

2Establishing a connection and transferring files

3The Command Line Interface

4The File System

5Manipulating File Contents

6Users, Groups and Access Control

7Processes

[tp1@slurm1 ~]$ head -n 20 insulin.fas #print the first 20 lines

Structure of the Command Line

[tp1@slurm1 ~] $ The prompt : displays the current user’s login (stage01), the host (or

machine) name (slurm0), the current directory (working directory) (~)

⚫ The space character is used to separate the various fields of the command line.

⚫ The character case (upper/lower) is important (is not the same as)

⚫ Each command has its own set of arguments and options

⚫ The Enter key () is used to run the program

head

-n 20 A command option (-n) possibly with an associated value (20).

The name of the program to run (first word following the prompt)

insulin.fas A command argument

print (...) Comments (ignored by the command)

HEAD

head

[tp1@slurm1~]$ ls –-help
Utilisation : ls [OPTION]... [FICHIER]...

Afficher des renseignements sur les FICHIERs (du répertoire actuel par

défaut).

The Command Line | Built-in Help

Each (self respecting) command is documented

To display a short documentation on how to use a command,

it is possible to use the –help or -h options

To get a more detailed documentation, it is possible to use the man (i.e. manual) command

Giving it as an argument the name of the command for which to display the documentation.

[tp1@slurm1~]$ man ls
LS(1) User Commands LS(1)

NAME

ls - list directory contents

SYNOPSIS

ls [OPTION]... [FILE]...

DESCRIPTION

List information about the FILEs (the current directory by default). Sort

entries alphabetically if none of -cftuvSUX nor --sort is specified.

Linux for Beginners | Outline

1Purpose of an Operating System – why Linux ?

2Establishing a connection and transferring files

3The Command Line Interface

4The File System

5Manipulating File Contents

6Users, Groups and Access Control

7Processes

Le système de fichiers | Utilité & concepts de base

In most Operating Systems, data are stored in files (text, images, tables, sequences,
measurement series….). Quickly, the number of files increases and it becomes
necessary to organize them to avoid getting lost. This is done by grouping them in
folders or directories. Folders can be stored in other folders, which in turn can be stored in

other folders, which in turn can be stored in other folders...

The File System | The Directory Tree

The Concept

The way it has been implemented in Linux (Unix)

Slash (or “/”) or root directory : the unique (top level) entry point

for the whole file system. A path leading to a file or a directory can

always be specified starting from the root directory

/bin : directory containing the major part of system commands.

The File System | Some important directories

/usr: directory containing sub-directories with “user”

commands.

/usr/bin: directory with frequently used commands (not as

important to run the system as those in /bin).

/usr/local: directory with subdirectories containing tools

installed on this specific machine (in particular

/usr/local/bin)

/home: top level directory of the user data directory tree.

Its organization depends on the number of users having

an account on the machine:

- few users (on workstations): each users subdirectory is

located directly in /home.

- many users: user subdirectories are located in

sub(sub(sub))folders.

At the SBR : the user directory layout has been defined to

integrate easily with the storage infrastructure also hosting

project storage spaces.

The home directory of user jdoe home directory will be

/shared/home/jdoe or /shared/home2/jdoe

The File System | Some important directories

The File System | Useful directories

/tmp : a directory where anyone can read and write files (but, only a file’s creator

has the rights to remove her own stuff). Handy to share data with colleagues on the

same machine (but beware the volume of data).

/shared/scratch : toplevel directory of a directory tree mimicking the project

directory tree destined to hold “work” data such as those generated by ongoing

computations, and not needing backups. “Old” files are automatically removed

after a certain inactivity delay.

/shared/projects : toplevel directory for project directories, destined to hold project

data than needs to be backed-up (initial data sets, final results).

/shared/home/tpYYYYYY : your home directory

SBR Specifics

The File Systems | So where are the actual disks ?

Windows-like systems define a single

letter for each storage device (hard disk,

DVD reader/writer, USB key, nerwork

drive), generating a non-unique top

level directory tree.

In order to use a file, one has to know on

which drive (letter) it is physically located.

Disk space extension by adding new

disks leads to the definition of new letters.

Moving data between disks may entail

application reconfiguration.

Storage space management is

transparent (for the user, at least).

UNIX/Linux like systems associate all devices

(not only storage devices), both local and

remote, to directories in the single rooted

directory tree, through so-called mount

points.

Navigating in the File System

Command execution takes place in the context of a session, defining at all times a

current user (the user running the command) and a current directory or

working directory (the directory where the command has been typed in).

When starting a new session, the current directory is always the home directory.

[tp1@slurm1 ~]$ whoami

tp1

Who am I (who is the current user) ?

Where am I (what is the current directory) ?

[tp1@slurm1 ~]$ pwd # print working directory

/shared/home/tp1

What can be found “here” (what are the contents of the current directory) ?

[tp1@slurm1 ~]$ ls #list (contents of working directory)

Bureau Documents Images Modèles Musique Public

Téléchargements Vidéos

Navigating in the File System

To change the current directory (a.k.a “move around” in the directory tree)

[tp1@slurm1 ~]$ pwd # print working directory

/shared/home/tp1

/

shared

home

tp1 tp2 tp3

Navigating in the File System

To change the current directory (a.k.a “move around” in the directory tree)

[tp1@slurm1 ~]$ pwd # print working directory

/shared/home/tp1

/

shared

home

tp1 tp2 tp3

[tp1@slurm1 ~]$ cd /shared/home/tp3 #change dir

[tp1@slurm1 ~]$ pwd

/shared/home/tp3

Navigating in the File System

Absolute paths

/

shared

home

tp1 tp2 tp3

Referring to files and directories located in the file system, as command arguments or options, is done

through paths.

Absolute paths are built starting from the root directory and adding the subdirectories one by one

separated by a slash character (/), until the desired file or directory is reached.

images

logo.png

/shared/home/tp1

/shared/home/tp3/images/logo.png

Whatever the current directory, an

absolute path will always lead to the

same file or directory.

Navigating in the File System

Relative paths

/

shared

home

tp1 tp2 tp3

Relative paths are built with the current directory as starting point and traversing the directory

tree upwards or downwards, until the desired directory or file is reached. The successive path

components are separated with slash (/) characters, and :

- On each upward step in the tree, two dots (..) are added to the path.

- On each downward step in the tree, the name of the directory is added to the path.

images

logo.png

tp3/images/logo.png

images/logo.png

../tp3/images/logo.png

logo.pngRelative path to the file starting from :

tp3

home

tp1

A shortcut to refer to the current directory :
- The dot (“.” character) always refers to the current directory

Navigating in the File System

A (provisional) conclusion

A shortcut for the home directory :
- The tilde (“~” character) always refers to the home directory of the current user

[tp1@slurm1 ~]$ pwd

/shared/home/tp1

[tp1@slurm1 ~]$ cd . # ???

[tp1@slurm1 ~]$ pwd

/shared/home/tp1

Use case : run a command file located in the current directory : ./mycommand

[tp1@slurm1 /shared/home/tp3]$ pwd

/shared/home/tp3

[tp1@slurm1 /shared/home/tp3]$ cd ~ # change to home dir

[tp1@slurm1 ~]$ pwd

/shared/home/tp1

Commands for manipulating files & directories

Listing the contents of a directory: ls

[tp1@slurm1 ~]$ ls # no arguments : current dir

Bureau Documents Images Modèles Musique Public Téléchargements

Vidéos

[tp1@slurm1 ~]$ ls /tmp/Linux-Initiation # absolute path
acteur.csv cours insulin.fas insulin_vs_nt.blast tmp

[tp1@slurm1 ~]$ ls .. # relative dir path (parent dir)

common stage02 stage1 stage17 stage24 stage31 stage6

common.linux-avance stage03 stage10 stage18 stage25 stage32 stage7

(...)

“Hidden” files (and directories)
By default, ls does not display files having names starting with a dot. The -a (all) option needs to be

added for them to be included (the la shortcut can also be used instead of ls).

[tp1@slurm1 ~]$ ls -a # also show hidden files

. Bureau Documents .kde Public .zshrc

.. .cache .emacs .local Téléchargements

.bash_logout .compiz .gconf Modèles Vidéos

(...)

Listing files matching a particular pattern

[tp1@slurm1 ~]$ ls Linux-Initiation/*ins*
Linux-Initiation/insulin.fas Linux-Initiation/insulin_vs_nt.blast

Using the * character in an argument of ls restricts the list to the files and directories whose names

match the pattern formed by the argument:
- image* : all files starting with the letters image (image-001, images-des-vacances,

imagettes)

- *seq* : all files having the letters seq in their names (sequences, mes-sequences,

maiseqoidon)

- * : each and every file (no restriction)

Commands for manipulating files & directories

Using autocompletion

[tp1@slurm1 ~]$ ls ../tp[TAB]

[tp1@slurm1 ~]$ ls ../tp

[tp1@slurm1 ~]$ ls ../tp[TAB]
tp1/ tp10/ tp32/

tp2/ tp11/

tp3/ tp12/

(...)

To avoid to have to type in long filenames it is possible to use the [TAB]key. Pressing the [TAB] key once

launches a file name (or directory) lookup to determine which ones start with what has already been typed.

-If there is a single match, it will be added to the command line,
-If there are several matches another press of the [TAB] key will list them all.

tp11tp10tp1 tp12 tp32tp2

home

Commands for manipulating files & directories

Displaying the contents of a whole directory (sub)tree with a single
command

[tp1@slurm1 ~]$ ls -R Linux-Initiation
Linux-Initiation/:

acteur.csv cours insulin.fas insulin_vs_nt.blast tmp

Linux-Initiation/cours:

Linux-Initiation/tmp:

Through the ls command, to which the -R (recursive) option is added:

With the tree command:

[tp1@slurm1 ~]$ tree Linux-Initiation
Linux-Initiation

├── acteur.csv

├── cours

├── insulin.fas

├── insulin_vs_nt.blast

└── tmp

2 directories, 3 files

Commands for manipulating files & directories

Organising data by creating subdirectories

[tp1@slurm1 ~]$ mkdir Linux-Initiation/tmp/essais

[tp1@slurm1 ~]$ ls -R Linux-Initiation
Linux-Initiation/:

acteur.csv cours insulin.fas insulin_vs_nt.blast tmp

Linux-Initiation/cours:

Linux-Initiation/tmp:

Linux-Initiation/tmp/essais:

With the mkdir (make directory) command. By default, only the last directory of the path given as

argument is created:

The -p option enables the creation of a whole subtree in a single step:

[tp1@slurm1 ~]$ mkdir -p Linux-Initiation/exercices/ex1/data

[tp1@slurm1 ~]$ ls -R Linux-Initiation/
(...)

Linux-Initiation/exercices:

ex1

Linux-Initiation/exercices/ex1:

data

Linux-Initiation/exercices/ex1/data:

Commands for manipulating files & directories

⚫ Create the following directory structure in your home
directory:

⚫ Check it has been correctly created by displaying it :

Exercises

⚫ Return to your home directory

⚫ Change to the fasta directory

⚫ Create a parser directory in the script directory

Exercises

Using a single command line for each of the following items :

Copying data

[tp1@slurm1 ~]$ cp acteur.csv acteur_bak.csv

The cp (copy) command copies one or more files, and even whole directory trees. It is used as follows

: cp SRC DEST where SRC is the path to the already existing data (the source) and DEST is the path

the the destination location.

Ex. 1 : copying a single file

[tp1@slurm1 ~]$ cp acteur.csv tmp # keep same filename in DEST

[tp1@slurm1 ~]$ cp acteur.csv tmp/stars.csv # change filename

Ex. 2 : copying a single file in another directory

[tp1@slurm1 ~]$ cp insulin* tmp

[tp1@slurm1 ~]$ ls tmp
insulin.fas insulin_vs_nt.blast

Ex. 3 : copying a set of files matchin a pattern to another directory

[tp1@slurm1 ~]$ cp -r ../tp10/exercices/solutions .

Ex. 4 : copying a complete directory structure using the -r (recursive) option

Commands for manipulating files and directories

Move or rename data

[tp1@slurm1 ~]$ mv acteur.csv liste_acteurs.csv

The mv (move) command, depending on its arguments, either renames or moves one or more files,

and possibily whole directories.
It is used as follows: mv SRC DEST where SRC is the path to the already existing data (the source

data) and DEST either the new name for the file or the directory in which it has to be moved.

Ex. 1 : renaming a single file

[tp1@slurm1 ~]$ mv acteur.csv tmp # keep same filename in DEST

[tp1@slurm1 ~]$ mv acteur.csv tmp/stars.csv # change filename

Ex. 2 : moving a single file to an (already existing) directory

[tp1@slurm1 ~]$ mv insulin* tmp

Ex. 3 : moving a set of files matching a pattern to another (existing) directory

[tp1@slurm1 ~]$ mv tmp/work/last_stage/output ./finalresults

Ex. 4 : moving a complete directory structure

- If ./finalresults already exists, the output y directory will be moved into it.

- if ./finalresults doesn’t exist, it will be created and will contain all the data previously located in

output

Commands for manipulating files and directories

Deleting data

[tp1@slurm1 ~]$ rm acteur_bak.csv

The rm (remove) command deletes th file(s) whose path(s) are given as argument.

Ex. 1 : removing a single file

[tp1@slurm1 ~]$ rm insulin*

Ex. 2 : removing a set of files matching a pattern

[tp1@slurm1 ~]$ rm -rf ~/tmp/worthless_files

Ex. 4 : Armageddon : forced (-f) removal of a whole directory structure

What is deleted with rm cannot be restored.

(jamais, never, jamas, nie, nooit, gwech ebet, någonsin, никогда,曾經)

[tp1@slurm1 ~]$ rm -r Linux-Initiation/tmp

Ex. 3 : removing a complete directory structure using the -r (recursive) option

[tp1@slurm1 ~]$ rmdir ~/tmp/empty_directory

Special case : removal of an empty directory with the rmdir command

Commands for manipulating files and directories

⚫ Go to your home directory

⚫ Copy the file to its destination directory

Exercises

Copy the insulin.fas file in the fasta directory

⚫ Move the insulin.fas file from the input/fasta
directory to the tmp directory

⚫ Remove the tmp directory and all its contents

Exercises

After making myproject/finalresult your current directory

Linux for Beginners | Outline

1Purpose of an Operating System – why Linux ?

2Establishing a connection and transferring files

3The Command Line Interface

4The File System

5Manipulating File Contents

6Users, Groups and Access Control

7Processes

A few words about file names (1)
Linux is very permissive about valid characters in file names (space characters, accents…). It’s safer to

avoid using them widely. Some recommendations:

Uppercase & lowercase characters ; digits ; dash ; underscore ; dot.

Characters with accents or other diacritical signs

Space characters or other punctuation marks

[n00b@slurm1 ~]$ mkdir nouveau dossier # creates 2 dirs, :(

[n00b@slurm1 ~]$ ls .

./:

nouveau

dossier

The “case of the space” character : it can be despecialized with the backslash (\) or the double quotes
(")

[tux@slurm1 ~]$ mkdir nouveau\ dossier # creates 1 dir, gg

[tux@slurm1 ~]$ mkdir "nouveau dossier 2" # id.

[tux@slurm1 ~]$ ls .

./:

nouveau dossier

Nouveau dossier 2

Manipulating File Contents

A few words about file names (2)

Linux doesn’t put any requirements on file name extensions (.txt, .csv, .pdf, .html, etc.).

Any extension can be given to any type of file.

IT IS STRONGLY RECOMMENDED TO REMAIN CONSISTENT

Linux uses other recipes to determine the nature of a file’s contents (cf. the file command).

Manipulating File Contents

Determining the nature of a file (1)

Manipulating File Contents

The file command displays a hypothesis about a file’s nature. It examines the beginning of the file

and compares this fingerprint to an internal “database” of fingerprints.

[tp1@slurm1 ~]$ file Linux-Initiation.pdf

Linux-Initiation.pdf: PDF document, version 1.4

[tp1@slurm1 ~]$ file Linux-Initiation.pptx

Linux-Initiation.pptx: Microsoft PowerPoint 2007+

Ex. 1 & 2 : Application specific files.

[tp1@slurm1 ~]$ file Linux-Initiation-supports.zip

Linux-Initiation-supports.zip: Zip archive data, at least

v2.0 to extract

Ex. 3 & 4 : Compressed archive files.

[tp1@slurm1 ~]$ file Linux-Initiation-supports.tar.gz

Linux-Initiation-supports.tar.gz: gzip compressed data, last

modified: Sat May 7 23:56:36 2017, from Unix

Determining the nature of a file (2)

Manipulating File Contents

[tp1@slurm1 ~]$ file acteur.csv

acteur.csv: ASCII text, with CRLF line terminators

[tp1@slurm1 ~]$ file /usr/bin/file
/usr/bin/file: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV),

dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux

2.6.32, BuildID[sha1]=a4f09f32eb214a3f9435484fa01d54c939bcf30c, stripped

[tp1@slurm1 ~]$ file insulin.fas

insulin.fas: ASCII text, with CRLF line terminators

[tp1@slurm1 ~]$ file monscript.sh # textfile with commands
monscript.sh: POSIX shell script, ASCII text executable

Ex. 5 & 6 : Executable files (binary commands or series of commands in a text file)

Ex. 7 & 8 : Text files

Ex. 9 : Files with data in a format unknown to the file command.

[tp1@slurm1 ~]$ file random.dat

random.dat: data

Examining the contents of a (text) file

Manipulating File Contents

The head command displays the first (10) lines of a file. head -n displays the n first lines.

[tp1@slurm1 ~]$ head -2 acteur.csv

First Name;Last Name;Age

Chuck;Norris;70

The tail command displays the (10) last lines of a file. tail -n displays the n last ones.

[tp1@slurm1 ~]$ tail -2 acteur.csv

Sylvester;Stallone;64

Steven;Seagal;59

The cat command displays the entire contents of a file.

[tp1@slurm1 ~]$ cat acteur.csv

First Name;Last Name;Age

Chuck;Norris;70

Sylvester;Stallone;64

Steven;Seagal;59

Interactively examining the contents of a (text) file

Manipulating File Contents

The more command displays the contents of a file “one page at a time”. The space bar moves from

the current page to the next; and “q” is used to quit.

[tp1@slurm1 ~]$ more insulin.fas
>gi|163659904|ref|NM_000618.3| Homo sapiens insulin-like growth factor

1 (somatomedin C) (IGF1), transcript variant 4, mRNA

TTTTGTAGATAAATGTGAGGATTTTCTCTAAATCCCTCTTCTGTTTGCTAAATCTCACTGTCACTGCTAA

(…)

--More-- 4%

[stage01@slurm0 ~]$ tail -2 acteur.csv

Sylvester;Stallone;64

Steven;Seagal;59

La commande cat affiche l’intégralité du contenu d’un fichier.

The less command also displays the contents of a file “one page at a time”. The spacebar moves

from the current page to the next; and “q” is used to quit. The and arrows allow to move back and

forth in the file.

[tp1@slurm1 ~]$ less insulin.fas
>gi|163659904|ref|NM_000618.3| Homo sapiens insulin-like growth factor

1 (somatomedin C) (IGF1), transcript variant 4, mRNA

TTTTGTAGATAAATGTGAGGATTTTCTCTAAATCCCTCTTCTGTTTGCTAAATCTCACTGTCACTGCTAA

(…)

insulin.fas

Both more and less allow to search for a text string in the file. This is done by typing slash (/)

followed by the text to search for, and then typing Enter Ex : /variant

Searching for information in a file (1)

Manipulating File Contents

The grep command takes two arguments : a pattern and a file name ; it displays every line of the file

containing the pattern.

[tp1@slurm1 ~]$ grep transcript insulin.fas
>gi|163659904|ref|NM_000618.3| Homo sapiens insulin-like growth factor 1 (somatomedin C) (IGF1),

transcript variant 4, mRNA

>gi|163659900|ref|NM_001111284.1| Homo sapiens insulin-like growth factor 1 (somatomedin C) (IGF1),

transcript variant 2, mRNA

>gi|163659895|ref|NM_001111276.1| Mus musculus insulin-like growth factor 1 (Igf1), transcript

variant 5, mRNA

>gi|163659893|ref|NM_001111275.1| Mus musculus insulin-like growth factor 1 (Igf1), transcript

variant 4, mRNA

>gi|163659891|ref|NM_010512.4| Mus musculus insulin-like growth factor 1 (Igf1), transcript variant

1, mRNA

By default, grep is case sensitive. To override this behaviour, the -i (ignorecase) option can be used.

[tp1@slurm1 ~]$ grep TRANSCRIPT insulin.fas # returns nothing

[tp1@slurm1 ~]$ grep -i TRANSCRIPT insulin.fas
>gi|163659904|ref|NM_000618.3| Homo sapiens insulin-like growth factor 1 (somatomedin C) (IGF1),

transcript variant 4, mRNA

>gi|163659900|ref|NM_001111284.1| Homo sapiens insulin-like growth factor 1 (somatomedin C) (IGF1),

transcript variant 2, mRNA

(...)

Searching for information in a file (2)

Manipulating File Contents

grep also allows to count the lines matching the pattern with the -c (count) option.

[tp1@slurm1 ~]$ grep -c transcript insulin.fas

5

By default, grep can also display the lines not containing the pattern, thanks to the -v (invert)

option.

As is the case for almost every command, options for grep can be combined.

[tp1@slurm1 ~]$ grep -c -i TRANSCRIPT insulin.fas

5

[tp1@slurm1 ~]$ grep -v -c -i TRANSCRIPT insulin.fas

511

grep can be used to search for a pattern in all the files of a directory tree, with the -r (recursive)

option. In this configuration, the second argument has to be the name of a directory. The lines with the

information about the patterns are then prefixed with the filename to which they belong.

[tp1@slurm1 ~]$ grep -r -c -i TRANSCRIPT .

./insulin_vs_nt.blast:144

./acteur.csv:0

./insulin.fas:5

Exercises

Find two ways of displaying the first line of the acteur.csv file (using

two different commands)

Find two ways to display the last three lines of the acteur.csv file

(using two different commands) [Granted, one is quite tricky.]

Changing the contents of a (text) file

Manipulating File Contents

The gedit command opens a window with a text editor.

[tp1@slurm1 ~]$ gedit acteur.csv

Changing the contents of a (text) file

Manipulating File Contents

The nano command opens a text editor in the window of the active session.

[tp1@slurm1 ~]$ nano acteur.csv

File management & Archiving

Manipulating File Contents

It is possible to determine the file size using the -l (-h)options of the ls command. The file size is

displayed in the fifth column.

[tp1@slurm1 ~]$ ls -l insulin_vs_nt.blast

-rw-r--r-- 1 stage08 stage 30025889 May 03 22:42 insulin_vs_nt.blast

[tp1@slurm1 ~]$ ls -l -h insulin_vs_nt.blast

-rw-r--r-- 1 stage08 stage 29M May 03 22:42 insulin_vs_nt.blast

The wc (word count) command also displays information about the size of a file : line, word and

character count. Using the -l option restricts the output to the number of lines.

[tp1@slurm1 ~]$ wc insulin_vs_nt.blast

622756 2377511 30025889 insulin_vs_nt.blast

[tp1@slurm1 ~]$ wc -l insulin_vs_nt.blast

622756 insulin_vs_nt.blast

File management & Archiving

Manipulating File Contents

To determine the size of a directory (and all its contents), the du (disk usage) command is used,

preferably with the -h (human readable) option.

[tp1@slurm1 ~]$ du -h .

64.0K ./tmp

4.0K ./cours

29M .

Adding the -s (summary) option displays the total volume occupied by the directory (and its contents).

[tp1@slurm1 ~]$ du -s -h .

29M .

File management & Archiving

Manipulating File Contents

To determine how much disk space is available on a mount point (a disk partition), the df command is

used (which also comes with an -h option).

[tp1@slurm1 ~]$ df -h
Filesystem Size Used Avail Use% Mounted on

/dev/sda7 1008M 750M 208M 79% /

(…)

/dev/sda1 504M 152M 327M 32% /boot

(…)

/dev/sda2 32G 541M 30G 2% /tmp

/dev/sda5 16G 9.5G 5.5G 64% /usr

/dev/mapper/VolGroup00-LogVol00 4.0G 3.0G 795M 80% /usr/local

(…)

brazil:/home/umr7139/mma 247G 210G 25G 90% /home/umr7139/mmaucture

brazil:/home/umr7139/tccd 591G 538G 24G 96% /home/umr7139/tccd

brazil:/home/umr7144/abice 1.2T 440G 636G 41% /home/umr7144/abice

(…)

When specifying a directory as argument, df displays information about the mounted file system

containing the directory.

[tp1@slurm1 ~]$ df -h /shared/home/tp1
Filesystem Size Used Avail Use% Mounted on

brazil:/shared/home 6.0T 3.5T 2.2T 62% /shared/home

File management & Archiving

Manipulating File Contents

Linux makes available different commands for compressing files, like gzip (older) or bzip2 (better

compression, a little less portable between systems). By default gzip replaces the file whose name is

given as argument with its compressed version and adds .gz to the file name (.bz2 for bzip2).

[tp1@slurm1 ~]$ gzip insulin_vs_nt.blast

[tp1@slurm1 ~]$ ls -l -h insulin_vs_nt.blast.gz

-rw-r--r-- 1 stage01 stage 5.0M May 13 20:42 insulin_vs_nt.blast.gz

[tp1@slurm1 ~]$ bzip2 insulin_vs_nt.blast

[tp1@slurm1 ~]$ ls -l -h insulin_vs_nt.blast.bz2

-rw-r--r-- 1 stage01 stage 3.2M May 13 20:42 insulin_vs_nt.blast.bz2

Decompression is achieved with gunzip (for.gz files) or bunzip2 (for .bz2 files).

[tp1@slurm1 ~]$ gunzip insulin_vs_nt.blast.gz

[tp1@slurm1 ~]$ bunzip2 insulin_vs_nt.blast.bz2

The compression ratio depends on the file contents : better for text files, quite low for already

compressed data (images, sounds, videos).

File management & Archiving

Manipulating File Contents

Creating an archive containing several files is possible with the tar command.

[tp1@slurm1 ~]$ tar -cf Linux-Initiation.tar Linux-Initiation

tar doesn’t modify the directory to archive in any way.

Ex 1 : Creation of an archive with the contents of the Linux-Initiation directory: the -c option

stands for “creation”, the -f option allows to specify the file name of the archive file name just

afterwards. The final argument is the name of the directory from which to build the archive.

Ex 2 : Extraction of all the files of the previously created archive: the -x option stands for “eXtraction”,

the -f option has the same meaning as above. The -v option activates the “verbose mode”

displaying each file name as it is extracted.

[tp1@slurm1 ~]$ tar -xvf Linux-Initiation.tar

Linux-Initiation/

Linux-Initiation/tmp/

(...)

Ex 3 : Listing the contents of an archive : the -t option (“toc”) displays the list of files in an archive.

Ex 4 : Extraction of a single file : the name of the file to be extracted is added as argument.

[tp1@slurm1 ~]$ tar -xvf Linux-Initiation.tar Linux-Initiation/insulin.fas

Linux-Initiation/insulin.fas

[tp1@slurm1 ~]$ tar -tf Linux-Initiation.tar

Linux-Initiation/

(...)

File management & Archiving

Manipulating File Contents

The tar command can be asked to carry out “on the fly” (de-)compression. To use gzip for this, the -

z option is added. To use bzip2,the -j option can be used.

[tp1@slurm1 ~]$ tar -czf Linux-Initiation.tar.gz Linux-Initiation

[tp1@slurm1 ~]$ file Linux-Initiation.tar.gz

Linux-Initiation.tar.gz: gzip compressed data (…)

[tp1@slurm1 ~]$ tar -xzf Linux-Initiation.tar.gz

[tp1@slurm1 ~]$ tar -cjf Linux-Initiation.tar.bz2 Linux-Initiation

[tp1@slurm1 ~]$ file Linux-Initiation.tar.bz2

Linux-Initiation.tar.bz2: bzip2 compressed data (…)

[tp1@slurm1 ~]$ tar -xjf Linux-Initiation.tar.bz2

Ex1. : On the fly compression/decompression with gzip.

Ex1. : On the fly compression/decompression with bzip2.

Using shortcuts : symbolic links

It is often handy to be able to access a set of files in a single directory, even if they are originally scattered in

several directories. And to do so without copying any data.

Use case :
-One of my directories, allsequences qcontains a myriad of sequence files related to various organisms.

-The file names hint to the organism to which the sequences they contain belong (human_seq*.fasta,

mouse_seq*.fasta, ecto_seq*.fasta, etc.)

-I wish to apply routines to these sequences whose parameters may depend on the organism. And I wish to
group de result files in organism specific (a.k.a separate) directories (process_human/,

process_mouse/, process_ecto/, etc.)

-But I want to avoid copying the sequence data in these process_*/ directories.

A solution relies on the creation, in the process_*/ directories, of shortcuts to each sequence file belonging

to a given organism, using the ln -s (link, symbolic) command.

[tp1@slurm1 ~]$ ln -s allsequences/ecto_seq_zAb3.fas process_ecto/

[tp1@slurm1 ~]$ ls -l process_ecto/

lrwxrwxrwx 1 stage01 stage 30 May 05 08:44 ecto_seq_zAb3.fas ->

allsequences/ecto_seq_zAb3.fas

Ex. 1 : Creating a symbolic link for a single file : the first argument is the name of the existing file (or directory),

and the second argument the name of the shortcut to create, or the directory in which to create a shortcut with

the same name.

Manipulating File Contents

Using shortcuts : symbolic links

shared

home

tp1 tp2 tp3

allsequences

ecto_seq_zAb3.fas

process_ecto

ecto_seq_zAb3.fas

The symbolic link creates a new entry in the file system “pointing” to an already existing entry.

Manipulating File Contents

Using shortcuts : symbolic links

home

tp1 tp2 tp3

allsequences process_ecto

ecto_seq_zAb3.fas

[tp1@slurm1 ~]$ rm -f allsequences/ecto_seq_zAb3.fas

[tp1@slurm1 ~]$ cat process_ecto/ecto_seq_zAb3.fas

cat: process_ecto/ecto_seq_zAb3.fas: No such file or directory

????

Deleting the original file makes the shortcut unusable!

Manipulating File Contents

Using shortcuts : symbolic links

It is easy to create series of symbolic links using patterns.

[tp1@slurm1 ~]$ ln -s allsequences/ecto_seq*.fas process_ecto/

[tp1@slurm1 ~]$ ln -s allsequences/mouse_seq*.fas process_mouse/

Symbolic links can also be used to transparently manage software package updates : a command can “point”

to a specific version of a tool. When the tool is updated, a new version of the command can be installed

alongside the previous one, and the link to the command is adjusted to point to the latest version.

/

usr

local

bin

java

java

jdk8jdk7

binbin

javajava

Manipulating File Contents

Exercises

⚫ Create a symbolic link in your home directory pointing to
the script directory.

⚫ Copy the acteur.csv file to finalresult/test-

TP.txt

⚫ Create a symbolic link in your home directory pointing to
the test-TP.txt file located in the in the

finalresult directory.

⚫ Display the contents of the test-TP.txt file located in

your home directory

⚫ Delete the finalresult/test-TP.txt file

⚫ Conclusion ?

Copying Files to/from a Remote Machine

Manipulating File Contents

The scp command is used to copy files to/from another Linux (UNIX) machine. To use it, it’s necessary

to have an account (user name and password) on the remote machine. scp is used like cp sbut one of

its arguments (source or destination) includes information about the remote machine as follows:
username@hostname:

[tp1@slurm1 ~]$ scp Linux-Initiation.tar.gz jdoe@myserver:cours/

Ex1. : Copying a local file to a remote machine : information about the remote machine is found in the

destination argument of the command.

- If needed, the password on the remote machine will be requested
- Transfers are encrypted: scp uses the SSH protocol.

[tp1@slurm1 ~]$ scp -r jdoe@myserver:cours/ .

Ex2. : Copying a directory structure from a remote machine : the information about the remote machine

is in the source argument of the command.

Copying files from a Web server through a URL

Manipulating File Contents

Ex1. : Fetching an ENA entry in FASTA format from its accession number.

The wget command is used to fetch a local copy of a (set of) file(s) located on a Web server, and

whose URL is known.

[tp1@slurm1 ~]$ wget "http://www.ebi.ac.uk/ena/data/view/BN000065&display=fasta"

--2017-04-14 12:42:09-- http://www.ebi.ac.uk/ena/data/view/BN000065&display=fasta

Resolving www.ebi.ac.uk... 193.62.193.80

Connecting to www.ebi.ac.uk|193.62.193.80|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: unspecified [text/plain]

Saving to: “BN000065&display=fasta”

[<=>] 320,575 --.-K/s in 0.1s

2017-04-14 12:42:09 (2.07 MB/s) - “BN000065&display=fasta” saved [320575]

Ex2. : Recursively (-r option) fetching contents from an HTML page (handle with care !)

[tp1@slurm1 ~]$ wget -r "http://abims.sb-roscoff.fr/training"

The remote directory structure is recreated in the directory where the wget command is run.

http://www.ebi.ac.uk/ena/data/view/BN000065&display=fasta

Exercises

Supposing your are in your project directory, copy, using a
single command, the test-TP.txt file located in the /tmp

directory of the ssh machine in the myproject/tmp directory.

Linux for Beginners | Outline

1Purpose of an Operating System – why Linux ?

2Establishing a connection and transferring files

3The Command Line Interface

4The File System

5Manipulating File Contents

6Users, Groups and Access Rights

7Processes

Users & Groups : the Concept

Users, Groups & Access Rights

In a Linux (UNIX) system, each resource (file, directory, running program…) is owned by a user having

a valid account on the machine. This user is the owner of the resource.

Every user belongs to at least one group. There is no limit to the number of groups a user can belong

to.

At any moment, each user has only one active group. This is the group that will be take into account by

the system when the user accesses a resource.
Users and groups have numerical identifiers, called uid (user id) and gid (group id).

The ls -l command displays information about the ownership (which user/group) of files and

directories.

[tp1@slurm1 ~]$ id

uid=123456(tp1) gid=7890(tp) groups=7890(tp),30266(users)

[tp1@slurm1 ~]$ ls -l acteur.csv

-rw-r--r-- 1 tp1 tp 84 May 13 21:19 acteur.csv

Owner Group

The id command displays the information about the identity of the user running the command.

Warning : these examples use a fictional group « tp »

including all « tpXXXX » accounts to be more

understandable.

Users & Groups : the Concept

Users, Groups & Access Rights

The operations a user can perform on a resource are defined by the rights she has both as user and as

member of groups to which she belongs.

Every user is limited to what she has access to on the system: file read/write access, program

execution, allocated disk or memory space.

A single user has no access limitations: the system administrator or root

File system Related Access Rights

Users, Groups & Access Rights

The ls -l command displays information on file/directory ownership and access rights. Access rights

are grouped in triplets made of the r,w,x or – characters.

[tp1@slurm1 ~]$ ls -l acteur.csv

-rw-r--r-- 1 tp1 tp 84 May 13 21:19 acteur.csv

[tp1@slurm1 ~]$ ls -l acteur.csv

-rw-r--r-- 1 tp1 tp 84 May 13 21:19 acteur.csv

[tp1@slurm1 ~]$ ls -l acteur.csv

-rw-r--r-- 1 tp1 tp 84 May 13 21:19 acteur.csv

Owner access rights (u : user)

Group access rights (g : group)

Access rights for users not members of the file’s group (o : others)

[tp1@slurm1 ~]$ ls -l acteur.csv

-rw-r--r-- 1 tp1 tp 84 May 13 21:19 acteur.csv

File Access Right Management

Users, Groups & Access Rights

Position in the

triplet

Character Matching right Character Matching right

1 r Read access

allowed
- No read

access

2 w Write access

allowed
- No write

access

3 x Execution

allowed
- Execution

forbidden

-rw-r--r--

rw-

r--

r--

Owner

Group

Others

Read and write access allowed, execution forbidden

Read access, no writing and execution

Same as for the group

Example

File system Related Access Rights

Users, Groups & Access Rights

Ex. 1 : Make a file “private” a.k.a remove (using the minus sign -) all rights (letters r, w and x) to the

group (letter g) and to others (letter o).

The chmod command is used to modify access rights to files and directories. Its first argument defines

the access right modifications to apply. Its second argument defines the file(s) or directory(ies) on which

to apply the modifications.

[tp1@slurm1 ~]$ chmod go-rwx acteur.csv

-rw------- 1 tp1 tp 84 May 13 21:19 acteur.csv

Ex. 2 : Add (+ sign) write access (letter w) for the group (letter g) to a file.

[tp1@slurm1 ~]$ chmod g+w acteur.csv

-rw-rw-r-- 1 tp1 tp 84 May 13 21:19 acteur.csv

Ex. 4 : Add (+ sign) execution rights (letter x) to a file.

[tp1@slurm1 ~]$ chmod +x monprogramme

-rwxr-xr-x 1 tp1 tp 84 May 13 21:19 monprogramme

Ex. 4 : Prevent file modification by removing (- sign) write (letter w) access to everyone (including the

owner)

[tp1@slurm1 ~]$ chmod -w acteur.csv

-r--r----- 1 tp1 tp 84 May 13 21:19 acteur.csv

File system Related Access Rights - Directories

Users, Groups & Access Rights

In the output of ls -l, directories are flagged with a d letter before the string defining the access

rights.

[tp1@slurm1 ~]$ ls -l

drwxr-xr-x 4 tp1 tp 4096 May 01 11:41 Linux-Initiation

Position in

the triplet

Char. Matching right Char. Matching right

1 r Reading the list of files is

allowed.
- Reading the list of files is

forbidden

2 w Creating, renaming and

removing files is allowed.
- File creation, renaming or

removal are forbidden

3 x Going (with cd) in the

directory is allowed.
- Cd’ing in the directory is

forbidden

The chmod command has an -R (recursive) option recursively applying the access rights to all files and

subdirectories of its destination argument.

File system Related Access Rights – Group Changing

Users, Groups & Access Rights

The chgrp, command allows to define a new group for a file or directory. The user running the

command must be member of the group.

[tp1@slurm1 ~]$ chgrp users acteur.csv

[tp1@slurm1 ~]$ ls -l acteur.csv

-r--r----- 1 tp1 users 84 May 13 21:19 acteur.csv

There is a command to change file ownership(chown)but its use is restricted to the system

administrator...

Exercises

Authorize all members of the users group to write in the Linux-

Initiation directory and its subdirectories. Check with your neighbor

that (s)he can deposit and remove files there. But forbid any modification
to the acteur.csv file.

Linux for Beginners | Outline

1Purpose of an Operating System – why Linux ?

2Establishing a connection and transferring files

3The Command Line Interface

4The File System

5Manipulating File Contents

6Users, Groups and Access Rights

7Processes

Some Definitions

Processes

A process is a currently running program. Each time a user issues a command (runs a program),

the operating system loads it into memory and starts its execution.

In order to run smoothly, a process needs memory and processor time (CPU). It is the duty of the

operating system to proceed to the optimal allocation of these resources among all the processes

running “simultaneously”. The load of a machine reflects the activity of all the active processes at any

given moment.

As for files, a process has an owner (user) and a group ; and associated rights or permissions.

The user has the ability -to some extent- to control process’ execution: she can stop them “by force”,

interrupt them to resume them later on, or modify their priority.

Running / Stopping / Interrupting processes

Processes

[stage08@slurm0 ~]$ gedit acteur.csv

[stage08@slurm0 ~]$

Ctrl-C “kills” the process. The user regains control.

A process running in the current session can be (brutally) stopped by typing the Ctrl-C key

combination.

[tp1@slurm1 ~]$ gedit acteur.csv

^C

[tp1@slurm1 ~]$

[tp1@slurm1 ~]$ gedit acteur.csv

[tp1@slurm1 ~]$

New commands can be run only after exiting gedit

A process killed by Ctrl-C frees all the resources (memory, open files) in its possession.

Each time a command is issued in the current session, a process is created and executed. Only when

the excution ends is it possible to issue new commands.

[tp1@slurm1 ~]$ gedit acteur.csv

^Z

[1]+ Stopped gedit acteur.csv

[tp1@slurm1 ~]$

Running / Stopping / Interrupting processes

Processes

The user regains control after typing Ctrl-Z. The process has been interrupted.

A process running in the current session can be interrupted with the key Ctrl-Z combination.

An interrupted process is “frozen”, and keeps all resources it was allocated (except for processor time).

It is assigned a job identifier (not to be confused with the process identifier, cf. following slides).

The jobs command lists all interrupted processes of the current session.

[tp1@slurm1 ~]$ gedit insulin.fas

^Z

[2]+ Stopped gedit insulin.fas

[tp1@slurm1 ~]$ jobs

[1]- Stopped gedit acteur.csv

[2]+ Stopped gedit insulin.fas

Resuming an Interrupted Process

Processes

The fg (foreground) command resumes the execution of an interrupted process. Without argument,

the most recently interrupted process will be resumed. To resume a specific process, it is possible to

use the % sign followed by the job identifier.

[tp1@slurm1 ~]$ jobs

[1]- Stopped gedit acteur.csv

[2]+ Stopped gedit insulin.fas

[tp1@slurm1 ~]$ fg %1

gedit acteur.csv

The bg (background) command also resumes an interrupted process but immediately gives back

control to the user in in the current session. Execution of the process continues in the background

[tp1@slurm1 ~]$ jobs

[1]- Stopped gedit acteur.csv

[2]+ Stopped gedit insulin.fas

[tp1@slurm1 ~]$ bg %2

[2]+ gedit insulin.fas &

[tp1@slurm1 ~]$

Running a process in background mode

Processes

A process can be run directly in background mode by adding an ampersand (&) to the command line.

Both a job identifier and a process identifier (PID) are displayed .

[tp1@slurm1 ~]$ gedit acteur.csv &

[3] 26357

[tp1@slurm1 ~]$

[tp1@slurm1 ~]$ ps -f

UID PID PPID C STIME TTY TIME CMD

tp1 16175 16174 0 17:21 pts/14 00:00:00 -bash

tp1 20693 1 0 17:37 pts/14 00:00:00 dbus-launch --autolaunch 9b7328b

tp1 26357 16175 0 17:58 pts/14 00:00:00 gedit insulin.fas

tp1 28638 16175 4 18:06 pts/14 00:00:00 ps -f

Displaying process information : ps

Processes

The ps (process status) command is used to display more or less detailed information

about processes.

Ex. 1 : Listing the processes in the current session.

Ex. 2 : Getting the detailed list of the processes in the current session with the -f (full) option.

[tp1@slurm1 ~]$ ps

PID TTY TIME CMD

16175 pts/14 00:00:00 bash

20693 pts/14 00:00:00 dbus-launch

26357 pts/14 00:00:00 gedit

27505 pts/14 00:00:00 ps

The main information are the PID (process identifier) and the name of the command (CMD).

Additionnal information is shown about the user (UID), the PID of the parent process (PPID), the start

time (STIME), the execution time (TIME) and the complete command line (CMD).

[tp1@slurm1 ~]$ ps -elf
0 S uguyet 29185 29184 0 80 0 - 28353 n_tty_ Apr19 pts/35 00:00:00 /bin/bash

0 S lgueguen 30113 10845 0 80 0 - 26364 n_tty_ May12 pts/32 00:00:00 less macros.xml

4 S root 30980 5864 0 80 0 - 28926 unix_s May12 ? 00:00:00 sshd: nhenry [priv]

5 S nhenry 31153 30980 0 80 0 - 28961 poll_s May12 ? 00:00:01 sshd: nhenry@notty

0 S nhenry 31154 31153 0 80 0 - 14977 poll_s May12 ? 00:00:01

/usr/libexec/openssh/sft

0 S pmandon 31370 2698 0 80 0 - 27641 n_tty_ May12 pts/64 00:00:00 /bin/bash

0 S lberdjeb 31598 1 0 80 0 - 26526 wait 12:22 ? 00:00:00 /bin/sh

/opt/sge/qlogin.

Displaying process information : ps

Processes

Ex. 3 : Listing the processes of a specific user with the -u (user) option.

Ex. 4 : Listing all the processes currently present on the machine with the -elf (extended, long, full) options.

[tp1@slurm1 ~]$ ps -fu tp1

UID PID PPID C STIME TTY TIME CMD

tp1 16174 16172 0 17:21 ? 00:00:00 sshd: stage08@pts/14

tp1 16175 16174 0 17:21 pts/14 00:00:00 -bash

(…)

tp1 20696 1 0 17:37 ? 00:00:00 /usr/libexec/gconfd-2

tp1 26357 16175 0 17:58 pts/14 00:00:00 gedit insulin.fas

tp1 32327 16175 0 18:20 pts/14 00:00:00 ps -fu stage08

Interactive Process Visualisation with top

Processes

The top command displays and continually refreshes the list of processes running on a machine. By

default, the list is sorted according to the process load (%CPU column). The command also

summarizes the overall state of the system (uptime, global load, memory availability) above the process

list.

Global system load over the last 1, 5 and 15 minutes

Snapshot of CPU usage

Snapshot of available and allocated memory

[tp1@slurm1 ~]$ gedit acteur.csv &

[1] 27908

[tp1@slurm1 ~]$ kill -KILL 27908

[tp1@slurm1 ~]$

Process termination : kill

Processes

The kill command sends a signal to the process whose process identifier (PID) is given as

argument. By using specific options (-HUP, -TERM, -KILL) the process is more or less “gently”

notified.

The kill command can only be used on one’s own processes.

Ex. 1 : Brutally stopping a process using kill with the -KILL option

Processes and Inheritance

Processes

Every process is spawned from a parent process. For instance, open a session yields a new process

which will be the parent process of all of the commands typed in on the command line.

The process with PID 1 is the process that, when the machine was started, gave rise to the system’s

process tree.

Halting a process results in halting all of its child processes (to keep in mind before using kill).

When a process ends, its parent process is notified. Until the parent process handles its child’s

termination, the latter stays in a zombie state. Zombie processes do not take up any system resources,

except if they proliferate in an uncontrollable way. Eliminating a zombie is done by “killing” its parent

process. It is then attached to the process with PID 1 who takes care of eliminating zombies.

Exercises

Open a connection. Run the gedit command in background mode.

Then close the connection. What happens ?

Detaching Processes from a Session

Processes

It is frequently necessary to execute programs whose running time will exceed the duration of a

session. Thus, automatic killing of these processes must be avoided when the session is closed.
The nohup (no hang-up) command allows to detach a process from a session.

[tp1@slurm1 ~]$ nohup mon_long_programme_de_bioinformatique.pl

nohup: ignoring input and appending output to `nohup.out'

Any information displayed by the program will be added to a file named nohup.out created in the

directory where the command was executed.

[tp1@slurm1 ~]$ mon_long_programme_de_bioinformatique.pl &

[1] 29087

[tp1@slurm1 ~]$ disown 29087

For programs already running (in background mode) and whose PID is known, the disown command

allows to detach it from the session.

Linux 101 | Bonus

1Bonus : Customizing Your Environment

The Session’s Environment - SHELL

Customization

Remember : each command is executed un a current directory with the credentials

of the current user.

When starting a session (local or remote), the process handling what the user types
is called the command interpreter or shell. Its purpose is to wait for the user to

hit the Enter key at the end of a command line a to try to make sense of it a.k.a run

the commands whose name(s) were typed in.

The shell is highly configurable.

Environment Variables - PATH

Customization

When the user types a command name, the shell looks for a matching (binary) file in a well

defined list of directories. This list is stored in an

environment variable
This specific variable is called PATH, and its value can be displayed with echo :

[tp1@slurm1 ~]$ echo $PATH

/opt/sge/bin/lx24-amd64:/opt/python/bin:/usr/local/java/bin:/usr/lib64/qt-

3.3/bin:/usr/kerberos/sbin:/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/usr/local/sb

in:/usr/sbin:/sbin:/opt/dell/srvadmin/bin:/usr/local/public/bin:/usr/local/genome2/bin:

/usr/local/genome/bin:/usr/local/adm/bin:/usr/local/admin/script:/usr/local/adm/script:

/usr/local/genome/script:/usr/local/genome2/h::/usr/local/genome2/seqclean:/usr/local/g

enome2/seqclean/bin:/usr/local/genome2/tgicl_linux:/usr/local/genome2/tgicl_linux/bin:/

usr/local/genome/emboss/bin:/usr/local/genome/phylip/bin:/usr/local/genome/mgadist:/usr

/local/genome/MUMmer:/usr/local/genome/TMHMM/bin:/usr/local/genome/hmmer/bin:/usr/local

/genome/fasta/bin:/usr/local/genome/mcl64/mcl-05-

321/bin:/usr/local/genome/WoLFPSORT_package_v0.2/bin:/usr/local/genome2/abyss/bin:/usr/

local/cristallo/bin:/home/fr2424/stage/stage08/bin:/opt/openmpi/bin:/opt/6.x/matlab/r20

13b/bin:/opt/6.x/matlab/r2013b/toolbox/abims/ffca:/opt/6.x/matlab/r2013b/toolbox/abims/

mexcdf:/usr/local/cristallo/shelx97:/home/fr2424/stage/stage01/bin

Command Lookup Customization

Customization

To find out in which of the directories included in the PATH a command is actually found, the which command

can be used :

[tp1@slurm1 ~]$ which grep

/bin/grep

[tp1@slurm1 ~]$ which java

/usr/local/java/bin/java

To run a command not located in one of the PATH directories, its (absolute or relative) path must be given :

[tp1@slurm1 ~]$ ls -l myproject/script

-rwxr-xr-x 1 tp1 tp 804 May 4 20:58 myproject/script/supercalcul.sh

[tp1@slurm1 ~]$ supercalcul.sh

-bash: supercalcul.sh: command not found

[tp1@slurm1 ~]$ myproject/script/supercalcul.sh

New directories can be added to the PATH to allow executing new commands without having to specify their

location.

[tp1@slurm1 ~]$ export PATH=~/myproject/script:${PATH}

[tp1@slurm1 ~]$ supercalcul.sh

export Propagates the new value of PATH to all subsequent processes in the same session

PATH= Means that a new value will be assigned to PATH

~/myproject/script The new directory that will be added (at the start) of PATH

:${PATH} The previous value of PATH is appended to the new directory.

Using Aliases

Customization

It is often handy to avoid repeatedly typing commands with the same options & arguments to
define an alias for them. This can be done with the alias command.

[tp1@slurm1 ~]$ alias hsc=’grep -c -i human’

[tp1@slurm1 ~]$ hsc insulin_vs_nt.blast

373

Ex. 2 : Creating an alias to count “human” sequences in a multi-FASTA file.

[tp1@slurm1 ~]$ alias grep=’grep --color’

[tp1@slurm1 ~]$ grep Homo insulin.fas

>gi|163659904|ref|NM_000618.3| Homo sapiens insulin-like growth factor 1 (somatomedin

C) (IGF1), transcript variant 4, mRNA

>gi|163659900|ref|NM_001111284.1| Homo sapiens insulin-like growth factor 1

(somatomedin C) (IGF1), transcript variant 2, mRNA

Ex. 1 : Redefining grep to display matches in color.

Making the Customizations Persistent

Customization

Environment variable changes as well as alias definitions are only valid for the duration of the

session they were made.

There is however a ~/.bashrc (text) file whose contents is read whenever a new session is

opened. The contents of this file can be any shell command, including alias definitions and

PATH modifications.

After modifying this file in the current session, the source command has to be issued for the

new version of the file contents to be taken into account in this session :

[tp1@slurm1 ~]$ source ~/.bashrc

Displaying Environment Parameters

Customization

[tp1@slurm1 ~]$ env
(…)

LANG=fr_FR.UTF-8

GDM_LANG=fr_FR

MANAGERPID=25591

DISPLAY=:0

INVOCATION_ID=964f88f33972481e93c31234b2e4483f

COMPIZ_CONFIG_PROFILE=ubuntu

(…)

The env command displays all the known environment variables with their values.

[tp1@slurm1 ~]$ alias
(…)

alias l='ls -CF'

alias la='ls -A'

alias ll='ls -alF'

alias ls='ls --color=auto'

(…)

The alias command displays the list of all active aliases.

Exercises

Add a customized version of grep to your environment, an reload your

configuration in the current session.

After handing filling the evaluation form at http://abims.sb-roscoff.fr/evaluation_formation,

you will receive a cheat sheet with the essential Linux commands.

http://abims.sb-roscoff.fr/evaluation_formation

